
InfoPowerTM
Developer’s Guide

Copyright ©2017 Woll2Woll Software, all rights reserved.
No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from Woll2Woll Software.

InfoPower is a trademark of Woll2Woll Software. Delphi is a trademark of Inprise
Corporation. Other brand and product names are trademarks or registered trademarks of
their respective holders.

Woll2Woll Software
3150 Reed Ave.

 Livermore, CA 94550 U.S.A.
Voice:(925) 371-1663

http://www.woll2woll.com
sales@woll2woll.net

InfoPower VCL License Agreement

By using the software product (“InfoPower VCL”) contained in this package, you agree to
the terms and conditions of this license agreement.

Permission is given to the licensee (“you”) of this product to use the development version
of this software under Delphi or C++ Builder on one computer at a time, and to make one
backup copy. Similarly, if the InfoPower source code is purchased, permission is given to
the licensee to use the source code under Delphi or C++ Builder on one computer at a
time. You may utilize and/or modify this product for use in your compiled applications.
You may distribute and sell any product, which results from using this product in your
applications, except a product of similar nature. You may NOT redistribute any source
code that may be included with this product.

This product is sold “as is”, without warranty, implied or expressed. While every effort is
made to insure that this product and its documentation are free of defects, Woll2Woll
Software shall not be held responsible for any loss of profit or any other commercial
damage, including, but not limited to special, incidental, consequential or other damages
occasioned by the use of this product.

Additional Source Code Restrictions:

If you purchased the optional InfoPower source code...

You may use InfoPower components and the related source code to create new
components for use within your company or to create a Windows program (executable
file created by Delphi). The resulting .EXE file, and .bpl run-time packages may be
distributed via freeware, shareware or any commercial means of sale or distribution, but
you must not include any other InfoPower file with your distribution media.

You may not create new components for distribution outside of your company, via
freeware, shareware or any commercial product offering, based on any InfoPower
component, unless those using your new component also have purchased an InfoPower
license.

Woll2Woll Software reserves the right to modify or remove any function, procedure or
property, that is not documented in this InfoPower Developer’s Guide, in future releases
of the InfoPower component library. This includes modifying the number and/or type of
parameters passed to un-documented functions or procedures.

Woll2Woll Software is not responsible for, nor can we provide technical support for, your
use of any un-documented InfoPower function, procedure or property. You assume full
responsibility for supporting your resulting code and component(s) as well as the results
of your using any undocumented function, procedure or property.

Technical Support Options

Before contacting us for technical support, please take some time to carefully search the
manual and on-line help for the information, including the troubleshooting section. Make
sure that you are asking a specific question about InfoPower instead of a general Delphi
question. Also be sure to check the useful sites at http://www.codenewsfast.com/ and
http://www.mers.com/searchsite.html, as they contain a database of InfoPower newsgroup
threads as well as all other Delphi related newsgroups.
When you need to contact us, please post your questions into our newsgroup. Also
review the messages already asked on the forum to see if your question has been asked
before. On the Internet, you can find our newsgroup by clicking on the MessageBoard
link located at https://groups.google.com/forum/?fromgroups#!forum/woll2wollinfopower.
In some cases it may be necessary to email us a simple project that shows us the problem
you are having. If you need to do this then please follow these recommendations:
1. Make your project as simple as possible so that we are not debugging your code but

instead are helping you with the proper way to use the components. In general try to
get your project down to one form, and remove all the extraneous objects and code.

2. When packaging your files for email delivery, use pkzip to compress your files into
one .ZIP file.

3. Email to techsupport@woll2woll.com
Our newsgroups are the fastest way to obtain technical support as it allows us to
efficiently obtain all the necessary information to solve your problems.

If you need to call technical support, you will need to supply us your
InfoPower registration number.

Internet WWW Site: http://www.woll2woll.com
Newsgroup: Click on link located at http://www.woll2woll.com
Internet Technical Support e-mail address: support@woll2woll.com

i

Contents
Introducing InfoPower..3

Before You Begin ...3
What’s Included in the Developer’s Guide?..4
What is InfoPower?..5

Installing InfoPower..7
InfoPower Requirements..7
Installation Steps ..8
Uninstalling InfoPower ..12
Compatibility issues between InfoPower and previous versions of InfoPower.....................12
Distributing applications which use the InfoPower components. ...12
Building packages that use the InfoPower components. ...14

InfoPower Component Overview ...15
InfoPower Sample Projects ..15
Complete InfoPower Component Hierarchy ...15

Programming with InfoPower ..19
Overview...19
Getting Help ...20
Using the Optional InfoPower Source Code ..20
What's new in InfoPower...21
InfoPower Database Architecture..21
Adding Custom Framing & Transparency..21
Using the Select Fields Dialog Box...26
Using InfoPower’s Picture Masks..32
Determining the object names of the controls contained in an InfoPower dialog41
Using XP Themes with InfoPower ...42

InfoPower Component Reference..43
Description of Reference ..43
TwwCheckBox..44
TwwClientDataset ..49
TwwController ...51
TwwDataInspector ...52
TwwInspectorCollection...72

ii

TwwInspectorItem ...74
TwwDataSource..81
TwwDBComboBox ...82
TwwDBComboDlg..93
TwwDBDateTimePicker...96
TwwDBEdit ..101
TwwDBGrid ...105
TwwDBLookupCombo ...157
TwwDBLookupComboDlg..168
TwwDBMonthCalendar ...175
TwwDBNavigator ...181
TwwDBRichEdit, TwwDBRichEditMSWord..187
TwwDBSpinEdit...206
TwwExpandButton...209
TwwFilterDialog...214
TwwIncrementalSearch ...232
TwwIntl ..235
TwwKeyCombo ..239
TwwLocateDialog ...241
TwwLookupDialog..246
TwwMemoDialog..253
TwwQBE ..258
TwwQuery ..264
TwwRadioButton..266
TwwRadioGroup ..268
TwwRecordViewDialog ..272
TwwRecordViewPanel ...286
TwwSearchDialog...293
TwwStoredProc ..301
TwwTable ...303

Troubleshooting ...311

Index..316

Chapter 1 - Introducing InfoPower, Before You Begin 3

C h a p t e r

1
Introducing InfoPower

With the assistance of this InfoPower Developer’s Guide, you will learn what InfoPower
is, how to install the InfoPower components into your Delphi/C++ Builder development
environments, how to access InfoPower’s demonstration forms, what each of the
InfoPower components is and most importantly, how to use these powerful components in
your Windows applications.

Before You Begin
This guide was written with several assumptions in mind: First, that you understand how
to use the Microsoft Windows environment. For help with Windows, please refer to your
printed Windows documentation and on-line help files. Next, that you have a basic
understanding of relational databases, database design and data management, along with
a working knowledge of the specific Database Management System (DBMS) your
application will be accessing, such as Paradox, dBase, Oracle, Sybase, InterBase and
others. For information related to creating a client/server application with Delphi, please
refer to Delphi's documentation.

Last, that you have a basic understanding of Delphi terminology and the application
development techniques covered in your Delphi manuals. The Delphi-specific topics you
should be familiar with include:

♦ Creating and managing projects.
♦ Creating new forms (data entry/edit windows) and managing units

(source code files).
♦ Working with data-aware components and their associated properties

and events.
♦ Writing simple Object Pascal source code.

4 Chapter 1, Introducing InfoPower , What’s Included in the Developer’s Guide?

What’s Included in the Developer’s Guide?
The InfoPower Developer’s Guide is comprised of the following six main chapters:

1. Introduction Description of InfoPower, its requirements and how
you and your end-users benefit when InfoPower
components are included in your Delphi or C++
Builder based Windows applications.

2. Installation Complete installation instructions. Compatibility
issues between previous versions of InfoPower.
Building and distributing packages that use
InfoPower.

3. Overview Text and graphic charts showing the architecture of
all InfoPower components. Reference to
demonstration programs.

4. Programming Programming tips and overviews of InfoPower
topics.

5. Reference Implementation instructions for each InfoPower
component, which includes complete descriptions of
new properties and events added to each InfoPower
component; descriptions of modified events; how-to
section; tips section; and Object Pascal source code
examples where necessary to help you implement the
InfoPower components in your applications.

6 Troubleshooting Alphabetical listing of components with descriptions
of possible problems and their solutions.

Chapter 1 - Introducing InfoPower, What is InfoPower? 5

What is InfoPower?
InfoPower is a library of very powerful, data-aware components that are automatically
installed into the component palette in its integrated development environment (IDE). The
InfoPower components include the following, listed alphabetically:

 TwwCheckBox

 TwwClientDataSet

 TwwController

 TwwDataSource

 TwwDataInspector

 TwwDBComboBox

 TwwDBComboDlg

 TwwDBDateTimePicker

 TwwDBEdit

 TwwDBGrid

 TwwDBLookupCombo

 TwwDBLookupComboDlg

 TwwDBMonthCalendar

 TwwDBNavigator

 TwwDBRichEdit

6 Chapter 1, Introducing InfoPower , What is InfoPower?

 TwwDBSpinEdit

 TwwExpandButton

 TwwFilterDialog

 TwwIncrementalSearch

 TwwIntl

 TwwKeyCombo

 TwwLocateDialog

 TwwLookupDialog

 TwwMemoDialog

 TwwRadioGroup

 TwwQBE

 TwwQuery

 TwwRecordViewDialog

 TwwRecordViewPanel

 TwwSearchDialog

 TwwStoredProc

 TwwTable

Chapter 2 - Installing InfoPower, InfoPower Requirements 7

 C h a p t e r

2
Installing InfoPower

We’ve automated the installation of InfoPower as much as possible, but a few manual
steps are still required to complete the process before you can access the InfoPower
components and sample applications provided with InfoPower. Complete instructions for
both installing and un-installing InfoPower are provided in this chapter.

InfoPower Requirements
To install the InfoPower component library, your system should already contain a fully
functional version of the Delphi 5.0, Delphi 6.0, Delphi 7.0, or C++ Builder 5.0 or 6.0
development environment, contain about 15 MB of free hard disk space. InfoPower does
not have any CPU or memory requirements above or beyond those necessary to run Delphi
or C++ Builder. However, if you are creating a complex form that contains many
components, you may need to increase the stack size of your project. We deem the 16K
(04000 Hex) default to be inadequate in most cases and strongly recommend that you
raise this value to 24K (6000 Hex), or up to whatever size is necessary to stop any
compiler or runtime errors you might be receiving.

Options | Project | Linker | Min Stack Size 0x00006000

8 Chapter 2, Installing InfoPower , Installation Steps

Installation Steps

Installing is accomplished with the following steps:
1. Running the Setup.exe program for your version of Delphi or C++ Builder (C++

support in InfoPower Professional version only)

2. Installing the components or packages into the IDE environment

3. Installing the help files into the IDE environment

1 - Running the SETUP.EXE program for your version of Delphi or C++
Builder
1. Insert the InfoPower CD-ROM into your computer, and then using the Windows

Program Manager, or your favorite method of running a Windows program, run
the SETUP.EXE program located in the \Delphi6 directory (for Delphi 7), the
\Delphi6 directory (for Delphi 6), the \Delphi5 directory (for Delphi 5), or the
\Builder5 directory (for C++ Builder 5), the \Builder6 directory (for C++ Builder
6) of your CD-ROM

2. Carefully read each screen, including the license agreement, and click Next to
proceed. When you encounter the Information dialog box that is shown in Figure
2.1, enter your name, organization, and registration number. Click the Next
button to proceed further.

Figure 2.1 - InfoPower’s Information dialog box.

Select a directory to place the InfoPower files.

Chapter 2 - Installing InfoPower, Installation Steps 9

If you want to change the installation directory, then type a new name or click
the Browse button to select an existing folder.

When you are ready to continue, click on the Next button to start the installation
process, or click the Back button to return to the main installation dialog box. The
installation will automatically check for available space, and create all the necessary
directories and sub-directories, de-compress and copy all requested files from the
installation diskette to your hard drive, and then display some additional installation
instructions for your viewing.

2 - Installing the components or packages into the IDE environment
Packages are special dynamic-link libraries used by Delphi or C++ Builder
applications. They allow code sharing among applications, reducing executable size
and conserving system resources. InfoPower supports both design time and runtime
packaging options. The following are the steps to install these packages into Delphi
and/or C++ Builder.

1. If Delphi/C++ Builder is not currently running, start it now. If Delphi/C++
Builder is currently running, save and close your open project and all related files
before you proceed.

2. If using Delphi, update the Delphi search path to point to the InfoPower DCU
files. If using C++ Builder, skip this step.

A. Click on Tools | Environment Options | Library.

B. Edit the Directories | Library Path edit box and add the InfoPower DCU
library path. For instance if you installed to c:\ip4000vcl7, you would add
c:\ip4000vcl7\lib to the Library path edit box. If you wish to debug into the
InfoPower source code, then instead add the \ip4000vcl7\source directory
path to your Library Path.

3. Installing the design time package - The install program will automatically
install the IP4000DCL7.BPL (for Delphi 7), IP4000DCL6.BPL (for Delphi 6,
Builder 6), IP4000DCL5.BPL (for Delphi 5, Builder 5), design time packages for
you. If for any reason you fail to see the InfoPower components appear in your
component palette, then perform the following steps:

A. Click on Project | Options | Packages

B. Click on the Design Packages | Add button to add IP4000DCL7.BPL (for
Delphi 7, Builder 7) , IP3000DCL6.BPL (for Delphi 6, Builder 6) or
IP3000DCL5.BPL (for Delphi 5, Builder 5) to your design time package for
your project. These files can be found in your \IP4000\package subdirectory.

If you wish to use the InfoPower richedit component integrated with Microsoft’s
spell checker (TwwDBRichEditMSWord), then you will also need to add one of
the following InfoPower packages (see steps above).

10 Chapter 2, Installing InfoPower , Installation Steps

IP4000WORDXPVCL7 Delphi 7 with Office Automation XP
IP4000WORD2000VCL7 Delphi 7 with Office Automation 2000
IP4000WORD2000VCL6 Delphi 6 with Office Automation 2000
IP4000WORD2000VCL5 Delphi 5 with Office Automation 2000
IP4000WORDVCL7 Delphi 7 with Office Automation 97
IP4000WORDVCL6 Delphi 6 with Office Automation 97
IP4000WORDVCL5 Delphi 5 with Office Automation 97

If you have previously used the TwwClientDataSet component, then you will also
need to add the package IP4000CLIENTVCL7 (Delphi 7), IP4000CLIENTVCL6
(Delphi 6), or IP4000CLIENTVCL5 (Delphi 5) to your list of runtime packages.
Note that TwwClientDataSet is for backwards compatibility with older
applications. Newer applications can simply use the TClientDataSet component
which removes the dependency upon this InfoPower package.

4. Optional and recommended - installing the run time package into Delphi/C++
Builder. This step is required if your applications are using the IP4000V7 (for
Delphi 7, Builder 7), IP4000V6 (for Delphi 6, Builder 6), or IP4000V5 (for
Delphi 5, Builder 5) run-time packages.

A. Click on (Project | Options | Packages).

B. Click on the (Runtime Packages | Add button) to add IP4000V6.DCP (for
Delphi 6, Builder 7), IP4000V6.DCP (for Delphi 6, Builder 6),
IP4000V5.DCP (for Delphi 5, Builder 5) found in your DELPHI or C++
Builder LIB directory, to your runtime time package list for your project.

C. Click on the default button in order to make the InfoPower package available
to all your projects.

3 - Installing the InfoPower On-line Help Files
To install the InfoPower online help, you will need to run the OpenHelp utility by clicking
on Help | Customize from the Delphi or Builder IDE. From there, click on Edit | Add
Files to add the ip4000d7.hlp (Delphi 7), ip4000d6.hlp (Delphi 6), or ip4000d5.hlp
(Delphi 5) file to the list of help files in the index and link tab pages. After adding the
help file, click on File | Save Project to save your changes.

Installation Tip
If desired, you can move either the IP Access, IP Controls, or IP Dialogs component
palette tabs to a different position from their default installation location via Delphi’s
Environment Options dialog box.

1. Open the Environment Options dialog box using the following:

 Tools | Environment Options

2. Click the Palette tab to display the Pages and Components lists.

Chapter 2 - Installing InfoPower, Installation Steps 11

3. Click and drag the IP Access, IP Controls, or the IP Dialogs entry displayed in the
Pages list to the desired location within the list.

4. Click the OK button to close the dialog box.

12 Chapter 2, Installing InfoPower , Uninstalling InfoPower

Uninstalling InfoPower
Uninstalling InfoPower from the Delphi/C++ Builder can be accomplished by the
following:

A. Close Delphi/C++ Builder if either is open.

B. Start the Control Panel application from Windows.

C. Click on the icon labeled Add/Remove Programs

D. Select InfoPower and click on the add/remove button. If this fails for any reason,
then go to the InfoPower directory and run the UNWISE.EXE program found
there. Only the files that were installed with the Setup program will be removed

Compatibility issues between InfoPower and previous
versions of InfoPower

InfoPower 4000 applications should not require any modifications if previously built with
InfoPower 3000. If you are upgrading from a version previous to InfoPower 3000, then
note the following compatibility issues:

• TwwDBGrid – InfoPower includes a property PadColumnStyle which defaults to
pcsPadHeaderAndData. This removes the whitespace at the bottom and right of
the grid if there are not enough records or columns to fill the grid. If you wish to
return to the old behavior of InfoPower 2000, then you will need to set the grid’s
PadColumnStyle to pcsPlain.

• TwwDBComboBox – When the ShowMatchText property is False, InfoPower
now adheres to the Windows combobox search behavior where the entered
character is used to find a match starting with that one character. Set
ShowMatchText to true if you desire continous incremental serarching where all
entered characters are used to search the list.

Distributing applications which use the InfoPower
components.

If you use the InfoPower runtime packages IP4000V7, IP4000V6, IP4000V5, in your
applications, then you will also need to distribute the corresponding files to your
customer’s computer. We recommend you place these files in your customer’s
\windows\system directory.

If you are not using these runtime package when building your applications, but instead
only the IP4000DCL7, IP4000DCL6, IP4000DCL5, design time package, then you will
have no additional distribution requirements beyond what Delphi already requires.

Chapter 2 - Installing InfoPower, Distributing applications which use the InfoPower components.
13

Development
system

InfoPower Distributables

Delphi 5
C++ Builder 5

IP4000V5.BPL
IP4000CLIENTVCL5.BPL (If using TwwClientDataSet)
If you are using the TwwDBRichEditMSWord component with
Delphi 5, then please read the following paragraph:
We recommend omitting IP4000WORDVCL5 and
IP4000WORD2000VCL5 from your list of runtime packages for
your project, as this removes the requirement to distribute both
the corresponding ip4000word* package as well as the office
automation package Dclaxserver50.bpl or Dcloffice2k50.bpl
(which are quite large). Omitting the IP4000WORD* runtime
packages from your project will add only about 10K to your
executable size, and allow you to omit distribution of these
related packages. If you do not omit these packages from your
runtime package list, then you will need to distribute these files
to your end-user systems.

Delphi 6 IP4000V6.BPL
IP4000CLIENTVCL6.BPL (If using TwwClientDataSet)
If you are using the TwwDBRichEditMSWord component, then
please read the following paragraph:
We recommend omitting IP4000WORDVCL6 and
IP4000WORD2000VCL6 from your list of runtime packages for
your project, as this removes the requirement to distribute both
the corresponding ip4000word* package as well as the office
automation package Dclaxserver60.bpl or Dcloffice2k60.bpl
(which are quite large). Omitting the IP4000WORD* runtime
packages from your project will add only about 10K to your
executable size, and allow you to omit distribution of these
related packages. If you do not omit these packages from your
runtime package list, then you will need to distribute these files
to your end-user systems.

Delphi 7 IP4000V7.BPL
IP4000CLIENTVCL7.BPL (If using TwwClientDataSet)
If you are using the TwwDBRichEditMSWord component, then
please read the following paragraph:
We recommend omitting IP4000WORDVCL7,
IP4000WORD2000VCL7, and IP4000WORDXPVCL7 from
your list of runtime packages for your project, as this removes
the requirement to distribute both the corresponding
ip4000word* package as well as the office automation package

14 Chapter 2, Installing InfoPower , Building packages that use the InfoPower components.

Dclaxserver70.bpl, Dcloffice2k70.bpl or Dclofficexp (which are
quite large). Omitting the IP4000WORD* runtime packages
from your project will add only about 10K to your executable
size, and allow you to omit distribution of these related
packages. If you do not omit these packages from your
runtime package list, then you will need to distribute these files
to your end-user systems.

Building packages that use the InfoPower components.
If you wish to build your own custom Delphi packages which require the InfoPower
component library, then you will need to add the IP4000V5 (Delphi 5 or Builder 5),
IP4000V6 (Delphi 6 or Builder 6), or IP4000V7 (Delphi 7 or Builder 7) package to the
required section of your package.

Chapter 3 - InfoPower Component Overview, InfoPower Sample Projects 15

 C h a p t e r

3
InfoPower Component Overview

When possible, each InfoPower component was modeled after one of Delphi’s built-in Data
Access or Data Control components by inheriting either the actual Delphi component itself or
one of it’s ancestors. The InfoPower component library was created in this manner for two
main reasons: First, to insure that each InfoPower component contains as much of the basic
functionality provided by its Delphi ancestor as possible. Second, to keep your InfoPower
learning curve as short as possible. In other words, if you are familiar with Delphi’s Data
Access and Data Control components, you already know the basics of how to add and
implement most of the InfoPower components!

InfoPower Sample Projects
Included with InfoPower are several small Delphi sample units that demonstrate the features
and functionality of the InfoPower components. During installation, a subdirectory named
DEMOS was automatically created within the InfoPower directory. We recommend you build
and run the main demonstration program as it includes all of the InfoPower demos in one
project. The main demonstration program is located in your InfoPower sub-directory at
ip3000\demos\maindemo\prjdemo.dpr.

Complete InfoPower Component Hierarchy
The next several pages contain both text-based and graphical hierarchies of the complete
InfoPower component library with all Delphi ancestors being shown for each InfoPower
component. These hierarchies provide you with a clear guide to all ancestor components so
you can obtain information about inherited methods, properties and other component data and
behavior. This becomes very important, and a great time saver, if you decide to create some of
your own in-house components by inheriting an InfoPower component.

16 Chapter 3, InfoPower Component Overview , Complete InfoPower Component Hierarchy

Complete InfoPower Component Hierarchy
 TComponent
 └─TControl
 └─TWinControl

 ├─TButtonControl
 │ ├─TCustomCheckBox
 │ │ └─TwwCustomCheckBox
 │ │ └─TwwDBCustomCheckBox
 │ │ ├─TwwCheckBox
 │ │ └─TwwExpandButton
 │ └─TRadioButton
 │ └─TwwCustomRadioButton
 ├─TCustomControl
 │ ├─TCustomGrid
 │ │ ├─TwwCustomDBGrid
 │ │ │ └─TwwDBGrid
 │ │ └─TwwDataInspector
 │ ├─TCustomGroupBox
 │ │ └─TwwCustomTransparentGroupBox
 │ │ └─TwwCustomRadioGroup
 │ │ └─TwwRadioGroup
 │ └─TCustomPanel
 │ └─TwwCustomTransparentPanel
 │ └─TwwDBNavigator
 ├─TCustomEdit
 │ ├─TCustomMaskEdit
 │ │ └─TwwCustomMaskEdit
 │ │ └─TwwDBCustomEdit
 │ │ ├─TwwDBCustomCombo
 │ │ │ ├─TwwDBComboDlg
 │ │ │ └─TwwDBCustomComboBox
 │ │ │ ├─TwwDBComboBox
 │ │ │ └─TwwDBKeyCombo
 │ │ ├─TwwDBEdit
 │ │ └─TwwDBSpinEdit
 │ ├─TCustomMemo
 │ │ └─TCustomRichEdit
 │ │ └─TwwCustomRichEdit
 │ │ └─TwwDBRichEdit
 │ ├─TwwDBCustomDateTimePicker
 │ │ └─TwwDBDateTimePicker
 │ ├─TwwDBCustomLookupCombo
 │ │ ├─TwwDBLookupCombo
 │ │ └─TwwDBLookupComboDlg
 │ └─TwwIncrementalSearch
 ├─TScrollingWinControl
 │ └─TScrollBox
 │ └─TwwRecordViewPanel
 └─TwwMonthCalendar
 └─TwwDBCustomMonthCalendar
 └─TwwDBMonthCalendar

Chapter 3 - InfoPower Component Overview, Complete InfoPower Component Hierarchy 17

Complete InfoPower Component Hierarchy (Continued)
 TComponent
 ├─TDataSet
 │ ├─TClientDataSet
 │ │ └─TwwClientDataSet
 │ └─TDBDataSet
 │ ├─TStoredProc
 │ │ └─TwwStoredProc
 │ ├─TTable
 │ │ └─TwwTable
 │ ├─TQuery
 │ │ └─TwwQuery
 │ └─TwwQBE
 ├─TDataSource
 │ └─TwwDataSource
 ├─TwwCustomDialog
 │ ├─TwwCustomLookupDialog
 │ │ ├─TwwLookupDialog
 │ │ └─TwwSearchDialog
 │ ├─TwwFilterDialog
 │ ├─TwwLocateDialog
 │ └─TwwRecordViewDialog
 ├─TwwMemoDialog
 ├─TwwController
 └─TwwIntl

Chapter 4 - Programming with InfoPower, Overview 19

 C h a p t e r

4
Programming with InfoPower

Overview
This chapter of the InfoPower Developer’s Guide discusses the details on how to program with
InfoPower.

Before jumping into the InfoPower component library, please take a few minutes to familiarize
yourself with the following topics, which are presented in this chapter:

• Getting Help
• Using the optional InfoPower source code
• InfoPower Database Architecture
• Adding Custom Framing and transparency to InfoPower’s edit controls
• The Select Fields dialog box because it’s available from many InfoPower

component
• InfoPower’s Picture Masks
• Determining the object names of the controls contained in an InfoPower

dialog

20 Chapter 4, Programming with InfoPower , Getting Help

Getting Help

Windows On-line Help
Accessing on-line help for an InfoPower component or one of its properties is exactly the same
as within Delphi—select the component or property you want help with and press F1.

How-To and Tips Sections
Most of the InfoPower component descriptions in this chapter also include How to and Tips
sections. These sections provide very valuable information that could save you many hours of
design, creation and debugging headaches, so take advantage of them whenever you can.

Implementation and Coding Examples
When you want a source code example of how to implement one or more InfoPower
components, look in this guide’s Index under the name of the component you are working
with. Then turn to the page number given for the sample application entry.

Troubleshooting Section
When you run into problems implementing an InfoPower component, please browse our
newsgroups located at http://www.woll2woll.com, as well as the troubleshooting chapter at the
end of this guide, before calling our technical support department. Also be sure to check the
useful sites at http://www.tamaracka.com/search.htm and
http://www.mers.com/searchsite.html, as they contain a database of InfoPower newsgroup
threads as well as all other Delphi related newsgroups.

The information provided in our newsgroups and Troubleshooting chapter are there to save
you time, money and frustration. Please use it wisely.

Exhaustive Index
We put a lot of extra effort into creating the Index section at the back of this guide and hope
that most topics you might need to search for are listed there. Please take a moment to browse
through the Index to get an idea of it’s layout and how it can help you, before you really need
it.

Using the Optional InfoPower Source Code
If you purchased the optional InfoPower component library source code, your use of this code
is limited by the terms and conditions specified in the InfoPower License Agreement which is
located at the beginning of this manual. As stated in this agreement, by using this product, you
automatically agree to the terms and conditions specified therein.

Your educational benefit of the source code depends upon your interest and knowledge of the
Delphi language. However the source code is invaluable if you run into a problem and need to
trace into the InfoPower source to determine the cause.

Chapter 4 - Programming with InfoPower, What's new in InfoPower 21

From time to time, you may be tempted to modify one of the existing InfoPower components to
meet some specific need you have. However, resist this temptation with all your might because
we cannot provide technical support to you if you have modified the InfoPower component
source code in any way. In addition, you would not be able to install any InfoPower
maintenance or upgrade releases from us since your modified source code would be
overwritten with these new releases.

Rather, if you need to create a new component for use within your organization that is based
on one of the InfoPower components, we suggest that you do one of the following:

1. Inherit the InfoPower component in your program and modify it as necessary.

2. If substantial internal code changes are necessary, create your own new
component: Copy all of the necessary source code files to new file names in
a new directory, rename the component internally, rewrite the registration
section accordingly and then finally modify the component code to meet
your specific needs.

Another need for acquiring the InfoPower source code is to make InfoPower compatible with
other third-party components or database drivers. Since both InfoPower and these other third-
party components are being constantly enhanced, it’s a good idea for you to contact both
Woll2Woll Software and the creator of your other third-party product to find out exactly what
source code changes to either product may be necessary for them to work together.

What's new in InfoPower
See the WhatsNew4000.htm file in your \ip4000 directory for information on the new features
of InfoPower.

InfoPower Database Architecture
Prior to InfoPower, you could not directly use the native datasets provided by Delphi, nor could
you directly use 3rd party datasets. You were forced to use descendents of these. InfoPower
now allows you directly use these Delphi datasets as well as any TDataSet descendent. For
instance to use a Delphi TADOTable, you simply drop a TDataSource and TADOTable into
your form, and the InfoPower components can connect directly to it. In the same way, you use
the Delphi InterBase objects, such as TIBTable or TIBQuery.

You still may wish to use the InfoPower TDataSet descendents as they do provide some
additional conveniences and functionality. For instance, they allow you to store your picture
masks in the dataset, instead of the visual control. See the documentation on TwwTable,
TwwQuery, TwwStoredProc, TwwClientDataSet, and TwwQBE for details on the InfoPower
datasets. However you are no longer required to use these.

Adding Custom Framing & Transparency
InfoPower gives you the means to create elegant forms that look just like the real hardcopy
form they are based on. Each control's transparent and custom framing effects can even

22 Chapter 4, Programming with InfoPower , Adding Custom Framing & Transparency

display underline controls that are transparent. However the custom framing goes far beyond
simple underline controls as you can display the borders in many different frame styles. You
can also set different frame styles for when the control has focus and when it doesn’t. You can
additionally disable any edge from being displayed. See the demo in the
\ip4000\demos\framing directory.

Form displayed as a check, using InfoPower’s transparent edit controls, custom
framing, and custom button effects.

Components that support custom framing and transparency
The following InfoPower components support picture, custom framing, transparency, and
button effects (where applicable): TwwCheckBox, TwwDBEdit, TwwDBComboBox,
TwwDBComboDlg, TwwDBSpinEdit, TwwIncrementalSearch, TwwKeyCombo,
TwwDBDateTimePicker, TwwDBLookupCombo, TwwDBLookupComboDlg,
TwwDBRichEdit, TwwRadioGroup, TwwRecordViewDialog, and TwwRecordViewPanel.

New in InfoPower 4000 - Controller to centralize your framing
properties
InfoPower 4000 introduces a new controller to centralize your framing settings for your
InfoPower or 1stClass edit controls. By using a controller, you can modify the framing
properties of the controller and have all the edit controls attached to this controller reflect its
property settings.

To use this new controller, drop a TwwController component into your application, and set the
controller property for each edit control. If you decide to modify the controller properties
during program execution, then you will need to call the ApplyFrame method in order for the
edit controls to reflect the changes.

Key properties and events for custom framing support
The following properties are new in InfoPower to support the custom framing, transparency,
and special button effects. Frame is a property available to all the InfoPower edit controls. In

Chapter 4 - Programming with InfoPower, Adding Custom Framing & Transparency 23

the RecordView controls, the name of the property is EditFrame. The following details each
sub-property of Frame.

Frame or EditFrame
Enabled
Set to True to enable the custom frame or transparency effects. If this property is false, then
the other properties below will not function.

AutoSizeHeightAdjust
When an edit control’s AutoSize is set to True, InfoPower computes what it deems the most
appropriate height for an edit control. You can set this property to adjust the resulting height
of the control. For instance a value of 1 will cause the control to be 1 pixel larger than the
value that InfoPower computes.

FocusBorders
Selects which borders are displayed when the control has focus.

NonFocusBorders
Selects which borders are displayed when the control does not have focus.

FocusStyle
Select the frame style when the control has focus.

NonFocusStyle
Selects the frame style when the control does not have focus

NonFocusTextOffsetX, NonFocusTextOffsetY
Use these properties to customize the painting of the text when the control does not have focus.
You should only override these properties if you do not like the default placement of the
painted text

NonFocusColor
Set this property to change the background color of the control when it does not have focus.
Use the Color property if you wish to change the color of the control when it has the focus. If
this property is set to clNone, then the color property is used to paint the background when it
does not have the focus.

NonFocusFontColor
Set this property to change the text color of the control when it does not have focus. You may
wish to set this property so that the text of the control stands out when it does not have focus.
This property is particularly useful when you have enabled transparency, and the control’s font
color is not legible with the background. By assigning the font to a color that is contrasted
well with the background will enable your user’s to clearly see the text when it does not have
the focus.

NonFocusTransparentFontColor
This property is maintained for backwards compatibility. For newer applications, instead use
the NonFocusFontColor property.

24 Chapter 4, Programming with InfoPower , Adding Custom Framing & Transparency

Set this property to change the text color of the control when it does not have focus. You may
wish to set this property so that the text of the control stands out when it does not have focus.
If you instead set the control’s font.color property, the text color will be the same whether or
not the control has focus. This could cause your text to disappear when your control receives
focus as the control paints the background instead of being transparent. Thus you should set
this property instead when using transparent controls.

MouseEnterSameAsFocus
Now in InfoPower, you can set this property to true to enable the control’s borders to paint as
if they had focus when the mouse is moved over the control. This gives a pleasing visual effect
similar to Microsoft Office controls. Set FocusStyle to efsFrameSunken with all borders and
set NonFocusStyle to efsFrameBox with no Borders to achieve this effect. For optimal display
may also wish to set the NonFocusTextOffsetX to 2 and the NonFocusTextOffsetY to 1.

Transparent
This property causes the control to display itself transparently when it does not have the focus.
The net effect is that you will see the background painted behind the control. Set this property
to True if you wish to see the background when the control does not have the focus.

Restrictions: The background must be painted by a non-windows control (not derived from
TWinControl), such as a Delphi TImage or the TfcImager (from Woll2Woll’s 1stClass
product). There may be some painting side effects when using a TWinControl to paint the
background. You should only set this to True if you have a background painted by a TControl,
not a TWinControl.

RecordViewDialog and RecordViewPanel custom framing
The InfoPower RecordViewDialog and RecordViewPanel components also support custom
framing. You can set the EditFrame property of these controls to determine the default
framing style for its contained edit controls. You may also wish to set the property Options |
tvoLabelsBeneathControls to True when your custom frame appears as an underline control,
as this provides for a more natural look.

Chapter 4 - Programming with InfoPower, Adding Custom Framing & Transparency 25

Use the OnSetControlEffects event to override the RecordView's EditFrame settings for an
individual or selected control. For instance the following code in this event will place a left-
border when the edit control is tied to a TBlobField.

procedure TForm1.wwRecordViewDialog1SetControlEffects(
 Form: TwwRecordViewForm; curField: TField; Control: TControl;
 Frame: TwwEditFrame; ButtonEffects: TwwButtonEffects);
begin
 if curfield is TBlobfield then
 begin
 Frame.NonFocusBorders:=
 Frame.NonFocusBorders + [efLeftBorder];
 end
end;

Key properties for enabling custom button effects in the edit
controls.
The following properties are new in InfoPower to support the custom button effects in controls
that display a button next to the edit control. These include the following controls:
TwwDBComboBox, TwwDBComboDlg, TwwDBDateTimePicker, TwwDBLookupCombo,
TwwDBLookupCombo, TwwDBLookupComboDlg, TwwDBSpinEdit. You can also enable
these effects in the recordview controls by using the OnSetControlEffects event.

ButtonEffects
Transparent

26 Chapter 4, Programming with InfoPower , Using the Select Fields Dialog Box

Set to True to enable the button to be displayed transparently so that the control’s background
is used as the button’s background.

Flat
Set to True to enable the button to be normally painted without the borders. The borders are
painted when the mouse moves over the button.

Using the Select Fields Dialog Box
The Select Fields dialog box, as shown in Figure 4.1, is available within most of the InfoPower
components. This dialog box allows you to select the fields you want displayed in the
associated visual interface components, as well as how you want the field to be displayed and
edited. The dialog box can be opened by double-clicking a data-aware InfoPower component,
or by clicking the “...” button of an InfoPower component’s ControlType, PictureMasks, or
Selected property.

 Figure 4.1 - InfoPower’s Select Fields dialog box.

The Select Fields dialog box contains a scrollable list of Selected Fields along with the tab-
controlled Currently Selected Field section. The Selected Fields list box displays a list of
fields that are currently selected for display in the associated component.

Chapter 4 - Programming with InfoPower, Using the Select Fields Dialog Box 27

Adding Fields
To select additional fields for display, click on the Add Fields button. This brings up the Add
Fields Dialog box.

 Figure 4.2 - InfoPower’s Add Fields dialog box.

The Available Fields list box displays a list of fields available from the associated table. The
contents of this list is determined by which fields were selected for retrieval from the
associated table via the Delphi Fields editor window (opened by double-clicking a table or
query component). The default display sort order for the Available Fields list is by Field Name.
To change the display sort order of the Available Fields list to that of the field’s position
within the table, check the Sort By Table Field Order check box.

To add one or more fields for display, you can use one of the following methods.

♦ To add several fields, not necessarily in sequence, click the first field name
selection within the Available fields list box that you want to add and then
use Ctrl+click (hold the Ctrl key down and click the left mouse button) to
make additional selections. Then click the OK button.

♦ To select an entire set of fields in sequence for adding, click the first
selection and then use Shift+click (hold the Shift key down and click the left
mouse button) on the last sequential field you want added. All fields in
between are automatically selected for adding. Then click the OK button.

28 Chapter 4, Programming with InfoPower , Using the Select Fields Dialog Box

Removing Fields
To remove one or more fields for display, you can use one of the following methods:

♦ To remove several fields, not necessarily in sequence, click the first field
name selection within the list box that you want removed and then use
Ctrl+click (hold the Ctrl key down and click the left mouse button) to make
additional selections. Then click the Remove Fields button.

♦ To select an entire set of fields in sequence for removal, click the first
selection and then use Shift+click (hold the Shift key down and click the left
mouse button) on the last sequential field you want removed. All fields in
between are automatically selected for removal. Then click the Remove
Fields button.

The order in which fields are displayed as columns in an InfoPower grid or record-view is
based on their order in the Selected Fields list. The first field in the list is displayed in column
position one, the second field in the list is displayed in column position two, and so forth. To
change the column in which a field is displayed in the component, change its position in the
Selected Fields list by clicking and dragging the field name to the desired position. The field
name is inserted immediately above the field name you release the mouse button over.

The Currently Selected Field section of the Select Fields dialog box contains four tabbed
pages: Display Attributes, Edit Control, Masks and Links. The Links tab only is visible when
the currently selected field is a calculated field. However the Links tab is only retained for
backwards compatibility, as you should use Delphi’s lookupfields for new projects. To switch
between the pages, click on the appropriate tab. Each of these pages is described in the
following paragraphs.

Display Attributes
The Display Attributes page allows you to modify the number of characters to be displayed in
the field via the Width edit box and the title to be displayed as the column heading via the
Title edit box (see Figure 4.3). The default value for Width is the length of the field, as defined
in the table, or the number of characters in the Title, whichever is greater. The default value
for Title is the name of the field as defined in the table. When either the Field Width or Field
Title edit boxes has focus (the edit box value is highlighted or the I-beam cursor is located in
the edit box), you can press the up or down cursor arrow key on your keyboard to move to the
previous or next Selected Field.

Chapter 4 - Programming with InfoPower, Using the Select Fields Dialog Box 29

 Figure 4.3 - The Currently Selected Field section of the Select Fields
 dialog box with the Display Attributes tab activated.

When you need to change field-specific attributes, such as data display alignment within a grid
cell, display format, edit mask, and others, you must use the Object Inspector. If the field is not
currently listed in the Object Inspector, it must first be added via Delphi’s Fields editor
window, which is opened by double-clicking the associated table or query component. Please
refer to your Delphi manuals or on-line help for more information about using the Fields
editor.

Read only: Set this to True if you wish for the column to be read-only

Group Name: Assign a group name property if you wish for the grid to hierarchically
represent a field title. For instance, if you have two fields “First Name” and “Last Name”, and
wish to group them together, then assign their GroupName property to “Name”. Note: You
must set UseTFields to false in order to assign the GroupName property and make certain that
your fields that you are grouping together are right next to each other.

Store display settings in TFields: When you want the field display properties to be stored into
the DataSet’s TField properties, then click on the “Store display settings in TFields” checkbox.
If you do not want this behavior, but instead want the field display properties to be stored with
the component, then uncheck this checkbox.

You might want to uncheck this when you are simultaneously displaying more than one grid
attached to the same TwwTable. This allows each grid to display different fields. This
property correlates to the UseTFields property of the TwwDBGrid.

Note: In general we recommend setting UseTFields to false, as when this property is true
certain grid functionality is disabled (i.e. ProportionalColWidths). The default is set to True to
maintain backwards compatibility.

30 Chapter 4, Programming with InfoPower , Using the Select Fields Dialog Box

Edit Control
The Edit Control page allows you to modify the type of control, or component, used to display
the field’s data (see Figure 4.4). Your options include Field, Bitmap, CheckBox, ImageIndex,
RichEdit, or CustomEdit. The default value for Edit Control is Field, which is a normal edit
control. The CheckBox, Bitmap, ImageIndex, RichEdit, URL-Link, and CustomEdit are very
useful when used from within an InfoPower TwwDBGrid or TwwRecordViewDialog
components, as discussed in the TwwDBGrid section later in this chapter.

 Figure 4.4 - The Currently Selected Field section of the Select Fields
 dialog box with the Edit Control tab activated.

When you select CheckBox, you are asked to supply two additional values, defaulted to Yes
and No respectively: “Value when checked” and “Value when unchecked”. If you are
attaching a checkbox to a Logical field type, then you should put in values of “True” and
“False”. If you have enabled the grid’s EditControlOptions.ecoCheckboxSingleClick, then
only a single click is required to toggle the checkbox.

InfoPower defaults to checkmark style checkboxes in the grid. If you wish to use an Xmark
style checkbox, then see the TwwIntl property CheckboxInGridStyle.

When you select CustomEdit, you are asked to supply the “Control name”, which must be an
existing component selected from the drop-down list. Any TwwDBGrid or
TwwRecordViewDialog displaying this field uses your specified Control. If your custom
control does not display as plain text and you are using it in the grid, then you may want to
enable the Control Always Paints checkbox. In this way the grid asks the control to take care
of painting the grid cell instead of the grid just painting the control as plain text. Not all
controls will support use of Control Always Paints, but InfoPower’s TwwCheckbox,
TwwRadioGroup, TwwDBRichEdit do support this.

When you select URL-Link, the field is displayed as a URL-Link. The format in the database
is <URL Display String>#<URL Link Address>. Alternatively you can omit the <URL
Display String># and the grid will display the raw address.

Chapter 4 - Programming with InfoPower, Using the Select Fields Dialog Box 31

When you select ImageIndex, the field is used as an index to the ImageList specified by your
grid’s ImageList property. If “Shrink To Fit” is checked, then InfoPower will shrink the
image to fit into the cell.

When you select RichEdit, you can specify the name of a TwwDBRichEdit control to associate
with the field. Any TwwDBGrid or TwwRecordViewDialog displaying this field uses your
specified TwwDBRichEdit. The grid uses the rich-edit by allowing the end-user to pop-up an
editing window simply by pressing F2 in the field.

When you select Bitmap, you are asked to supply the bitmap drawing characteristics.

Bitmap Scaling Determines how the bitmap is drawn in the cell. You are given the
following choices for this setting.

Original Size Bitmap is copied with no scaling. If necessary, the bitmap will be
clipped so it fits in the cell.

Stretch to Fit Bitmap is stretched to the size of the cell.

Fit Width Bitmap is stretched horizontally so that it fits the width of the cell.

Fit Height Bitmap is stretched vertically so that it fits the height of the cell.

Raster Operation Determines the raster operation used to copy the bitmap to the cell.

Note: Instead of using a control type of Bitmap, you instead may wish to embed a TDBImage
as a custom control (setting its Control Always Paint checkbox to true). This will provide
increased flexibility in managing the bitmap.

Masks
See the following section “Using InfoPower’s Picture Masks”, which details the InfoPower
picture mask functionality.

Links
InfoPower’s linked fields perform the equivalent of Delphi’s lookup fields. This property is
maintained for backward compatibility with earlier versions of InfoPower. See the
documentation on Delphi’s lookup fields if you wish to display information from a related
table in the grid.

32 Chapter 4, Programming with InfoPower , Using InfoPower’s Picture Masks

Using InfoPower’s Picture Masks
InfoPower gives Delphi programmers the power to define a data entry template, or mask, for
the values that can be entered into a field displayed on the screen. This functionality duplicates
the Picture function that’s been available in Borland’s Paradox relational database product for
quite some time now, so most Paradox programmers will recognize this component and it’s
functionality almost immediately.

Picture masks force end-users to enter only those characters, digits and special characters that
you allow them to, and only in those specific positions within a field that you pre-define. This
can be very important for fields such as multi-sectioned account and part numbers; various
USA and international Zip code formats; a short list of pre-defined words such as Red, Blue or
Green; or even for automatic capitalization of only the first word or all words in a field. The
uses of Picture Masks are almost limitless, and go far beyond what Delphi’s edit masks can do

Components that support picture masks
The majority of InfoPower components support picture masks. These include the following:
TwwDBEdit, TwwDBComboBox, TwwDBComboDlg, TwwDBSpinEdit, TwwDBGrid,
TwwDataInspector, TwwRecordViewDialog, TwwRecordViewPanel, TwwIncrementalSearch,
and TwwFilterDialog. The TwwDBLookupCombo and TwwDBLookupComboDlg do not
support picture masks.

How are picture masks used
InfoPower uses picture masks in the following ways.

1. For bound (datasource and datafield properties both assigned) and unbound controls,
pictures are used as an edit mask. When editing with one of the picture-mask supported
visual components, the user’s entry is continuously checked against the mask to prevent
illegal entries as well as to assist in the auto-filling of values.

Note: Picture masks only check the validity of the input when he user is typing at the end
of the text. Its not possible to verify in the middle because quite often the user needs to
temporarily make the text invalid, but it would become valid if they were allowed to
continue. For instance consider the picture mask {Red, Blue, Green, Gn}, and the current
text contains 'Gn'. The end-user wishes to insert 'ren' between 'G' and 'n', so that the end-
result would be 'Green'. If picture masks were doing validation in the middle of the text it
would not allow them to type in 'r', as 'Grn', would be invalid. Your data though is still
protected as validation is again performed when the end-user tries to exit the control. As
a result, they still cannot enter anything invalid into the database.

2. When using picture masks with an InfoPower TwwTable or TwwQuery, they are
additionally used to verify the validity of the fields in the record before the record is
posted. In this way even invalid assignments to a database field using code will be
detected. InfoPower generates a DatabaseError exception when encountering an invalid

Chapter 4 - Programming with InfoPower, Using InfoPower’s Picture Masks 33

user value. If you wish to provide your end-users a different error message, you can use
the TwwTable, TwwQuery, or TwwQBE event OnInvalidValue.

3. When using an InfoPower TwwTable component against a Paradox table, the picture
masks stored in the physical table are automatically read and used by the component.

Note: Do not confuse InfoPower’s picture masks with how a field is displayed to the end-user.
InfoPower’s masks are only used for editing and validation. They do not control how a field is
displayed in a grid or an edit control. To control display formatting, see the Delphi TField
DisplayFormat property, as well as the formatting options available for date/time such as
ShortDateFormat, etc.

Defining a PictureMask property string:
To define a PictureMask property string, use the following special characters for the definition
of required characters, digits, repeats, literals, letter case conversion, and optional entries,
along with any other character as a constant:

Character Description
Any digit (0-9)

? Any letter (a-z or A-Z)

& Any letter (a-z or A-Z – automatically converted to uppercase)

~ Any letter (a-z or A-Z – automatically converted to lowercase)

@ Any character

! Any character (letters automatically converted to uppercase)

; Next character is to be used literally and not used as a picture mask
character.

* Repeat the following character any number of times. For instance *&
means convert any number of characters to uppercase. To specify a
specific number of times, follow the * with a number. For instance to
specify 5 numbers in a row, you would use *5{#}

[abc] Optional sequence of characters abc that do not need to be entered by the
end-user

{a,b,c} Grouping operator. Set of a, b, or c. The end-user must choose either a,
b, or c. For instance {Red,Green,Blue} means the end-user must choose
either Red, Green, or Blue. Similarly {R,G,B} means the end-user must
choose between the characters R, G, or B.

Note: The picture mask must be carefully constructed to avoid situations
where one element completely contains another element in the group. For
instance if you have 3 valid choices of Auto, Automobile, and Car, do
NOT set the picture mask to {Auto,Automobile,Car}. Instead set the

34 Chapter 4, Programming with InfoPower , Using InfoPower’s Picture Masks

picture mask to {Auto[mobile],Car}.

If you enter any other character in a picture mask, InfoPower treats the character as a constant.
When the end-user is entering a value in a field with a picture mask that contains constant
values, and they come to the point where the constant value is specified, InfoPower
automatically fills-in (enters or types) the constant for the end-user. This is known as Auto-Fill
and requires the AutoFill property setting to be True, otherwise the constant characters will
not be filled-in automatically.

Simple Examples:

 #####[-####] Standard U.S.A. 5-digit postal code with optional 4-digit suffix
 (i.e. 12345 or 12345-6789). Optionally, this picture mask can
 be specified as *5{#}[-*4#]. This “shorthand” method allows
 you to specify very long picture masks in just a few characters.

#&#&#& Standard Canadian postal code (i.e. 1A2B3C).

*! Any number or any character with all letters automatically
 converted to uppercase (i.e. 123abc becomes 123ABC).

{Yes,No} Either "Yes", "No", or blank (since the braces indicate that an
 entry in this field is optional). If the AutoFill property is set to
 True, all the user has to type is either “y” or “n” and the
 respective value is automatically entered into the field. If
 AutoFill is set to False, the user must enter the entire word,
 either “Yes” or “No”.

&*? Letters, with first letter capitalized.

#[#][#] Numeric of 3 digits or less

Complex AutoFill Example:

{Red,Gr{ay,een},B{l{ack,ue},rown},White,Yellow}

This picture mask allows the user to enter only the colors Red, Gray, Green, Black, Blue,
Brown, White or Yellow. If the AutoFill property is set to True, as the user enters
characters that define the specific color (non-repeating characters), InfoPower will
automatically fill in the remaining characters. For example, when the user enters the letter
“r”, as the first character in the field, InfoPower will automatically fill the field with the
text “Red”. When the user enters a “b” as the first character in the field, InfoPower
doesn’t know whether to enter Black, Blue or Brown into the field. So, nothing happens
until the user adds the characters “la” (for Black), “lu” (for Blue), or “r” (for Brown), at
which point InfoPower automatically fills in the corresponding value into the field.

Chapter 4 - Programming with InfoPower, Using InfoPower’s Picture Masks 35

How to edit the picture masks using the InfoPower design tools
You can edit picture masks via one of the following methods.

1. Invoke the Select Picture Mask Dialog by clicking on the Picture property through one of
the picture-mask supported InfoPower components. See the following pages for a
description of the Select Picture Mask dialog.

2. Invoke the Select Fields Dialog by double clicking on an InfoPower TwwDBGrid.

There exists at most one picture mask for a given database field, so using any one of the above
3 techniques is equivalent. All InfoPower components tied to the same field will share the
same picture mask.

Note: If using Paradox tables that define a picture mask at the table level (Database Desktop),
these will automatically be used by the InfoPower TwwTable when it posts a record. However
in these cases you cannot change the picture mask for the field within Delphi.

Key properties and events of InfoPower’s picture mask support
Unless otherwise indicated the following properties and events are for the TwwDBEdit,
TwwDBComboBox, TwwDBComboDlg, TwwDBSpinEdit, TwwDataInspector,
TwwRecordViewDialog, TwwRecordViewPanel, and TwwDBGrid. Note: the TwwDBGrid,
TwwRecordViewDialog, and TwwRecordViewPanel do not have properties with the following
names, but instead has design-time dialogs for manipulating these properties.

Picture | PictureMask
This property allows you to enter picture mask characters manually, via the Object Inspector.
The default value is blank. Please refer to the Defining a Picture Mask section earlier in this
chapter for a description of defining a picture mask, using the Select Picture Mask dialog box
to select a previously saved picture mask, along with creating and saving a new picture mask.
Data Type: String
Valid Values: Blank or a valid picture mask

Picture | AutoFill
When you enter a picture mask that consists of auto-fill characters, setting this property to
True will activate the auto-fill capabilities of the picture mask when the application is run.
When False, all auto-fill capabilities of the picture mask defined for this field are deactivated.
The default value is True.
Data Type: Boolean

Picture | AllowInvalidExit
When True, the end-user may move off of a field that contains a picture mask even though the
data they entered might be invalid. When False, the user must enter valid data, according to
the picture mask, into this field. The default value is False. Normally you will probably want
to leave this property set to False. However in some situations you may want to allow user to
move to another control (i.e. button) before completing the editing.

36 Chapter 4, Programming with InfoPower , Using InfoPower’s Picture Masks

This property only applies to unbound InfoPower edit controls. This property can not be set to
True for any InfoPower edit control that is bound (datasource and datafield properties
assigned). Bound controls do not allow the edit control to lose focus if it has a value that does
not pass the picture mask test. This ensures the integrity of the data input.
Data Type: Boolean

Picture | PictureMaskFromDataSet
This property is ignored unless you are using a control bound to a TwwTable, TwwQuery, or
TwwStoredProc. In other cases the picture mask information is always stored in the edit
control. If the related edit control is bound to a datasource, then the picture mask information
can be stored in the dataset. Set this property to false to instead store the picture mask
information in the edit control.

UsePictureMask
When True, picture masks are used by the InfoPower controls during editing. When False,
picture masks are not used during editing. In either case when using a TwwTable or
TwwQuery, picture masks are still used to verify the validity of the fields in the record before
the record is posted.

OnCheckValue
This event allows you to perform some custom action based on any change to the edit
component’s text. This event is only fired if you have a picture mask assigned for the field.
For instance you may want to put the edit control in yellow when it does not satisfy the picture
mask requirements.

Parameters
Sender : TObject Edit Component that is being checked. Sender is the

component this event is attached to, except when in a grid.
If used in a TwwDBGrid, Sender is a TwwInplaceEdit
component. See the property TwwDBGrid InplaceEditor
for more information on the TwwInplaceEdit type.

PassesPictureTest : Boolean True if edited text passes the picture mask constraints.

Example 1 (Coloring of a TwwDBEdit control during editing):The following example
will give a TwwDBEdit component a yellow background whenever the edited text does
not satisfy the picture mask constraints.
procedure TMainDemo.wwDBEdit1CheckValue(Sender: TObject;
 PassesPictureTest: Boolean);
begin
 if (not PassesPictureTest) then wwDBEdit1.Color := clYellow
 else wwDBEdit1.Color := clWhite;
end;

Example 2 (Coloring of a TwwDBGrid cell during editing): The following example
will give cells being edited with the default editor a yellow background whenever the
edited text does not satisfy the picture mask constraints. If you are also attaching your
own custom editors within the grid (i.e. TwwDBComboBox, TwwDBEdit) you need to use
the code in the prior example.

Chapter 4 - Programming with InfoPower, Using InfoPower’s Picture Masks 37

procedure TForm1.wwDBGrid1CheckValue(Sender: TObject;
 PassesPictureTest: Boolean);
begin
 if (not PassesPictureTest) then
 (Sender as TwwInPlaceEdit).Color := clYellow
 else
 (Sender as TwwInPlaceEdit).Color := clRed;
end;

PictureMaskFromDataSet (TwwDBGrid, TwwRecordViewPanel,
TwwRecordViewDialog, TwwDataInspector)
This property determines where the design-time picture mask settings are stored. If this
property is True, then the picture mask information is stored in the dataset. This allows you to
configure the picture masks once for a field in a centralized location. If this property is false,
the picture mask definition is stored in the related edit component.

This property is ignored unless you are using a control bound to a TwwTable, TwwQuery, or
TwwStoredProc. In other cases the picture mask information is always stored in the visual
control

OnValidationErrorUsingMask (TwwIntl)
When exiting an InfoPower edit control with a picture mask assigned, you can customize the
error handling when the input does not satisfy the picture mask constraints. Be sure to set
your TwwIntl connected property to True, if you want the InfoPower controls to call this event.
If the OnInvalidValue of the related dataset is assigned, then this event is not called as it then
uses the OnInvalidValue event. The parameters for this event are described below.

Parameters
Sender: TObject Edit control or grid associated with the picture mask

validation error.

Field: TField TField that has an invalid value

var Msg Assign Msg to override the default error message.

var DoDefault Set to False if you want to completely handle the display of
the error message as well as throwing the exception.

Example: The following code changes the picture mask error message.

procedure TMainDemo.wwIntl1ValidationErrorUsingMask(Sender: TObject;
 Field: TField; var Msg: String; var DoDefault: Boolean);
begin
 Msg:= 'Bad value: ' + field.fieldname;
end;

OnInvalidValue (TwwTable, TwwQuery, TwwQBE, TwwStoredProc)
Before posting a record, InfoPower will test the defined picture masks for each field. If it finds
a field value that does not pass the picture mask test, then InfoPower generates a
DatabaseError exception. If you wish to provide your end-users a different error message, you
can use the TwwTable, TwwQuery, TwwStoredProc, or TwwQBE event OnInvalidValue.
When using this method, be sure to use either a procedure that throws an exception (such as

38 Chapter 4, Programming with InfoPower , Using InfoPower’s Picture Masks

DatabaseError - See Delphi on-line help for information on this procedure), or throw your own
exception. If you do not, the user will still see the default message.

Parameters
DataSet: TDataSet Table or Query attempting a post

Field: TField TField that has an invalid value

Example: The following example changes the error message on an invalid value to
“Value is not valid : ”, followed by the Field’s display name.

procedure TForm1.wwTable1InvalidValue(DataSet: TDataSet;
 Field: TField);
begin
 DatabaseError('Value is not valid : ' +
 Field.DisplayLabel);
end;

Using the Select Picture Mask dialog
The Select Picture Mask Dialog gives you a convenient way of assigning a picture mask to an
InfoPower edit component. This dialog is invoked by clicking on the Picture property through
one of the picture-mask supported InfoPower components (TwwDBEdit, TwwDBComboBox,
TwwDBComboDlg, and TwwDBSpinEdit, TwwIncrementalSearch)

Figure 4.5 - Select Picture Mask Dialog

The following defines the controls in the dialog:

Picture Mask - Enter your picture mask into the Picture Mask edit control. Note: If you
want to select an existing picture mask, click on the icon.

Auto Fill - Enable this checkbox to enable AutoFill. See property AutoFill

Allow Invalid Exit - Enable this checkbox to enable AllowInvalidExit. See property
AllowInvalidExit. This checkbox is disabled if you are modifying a bound edit control.

Use Mask in Edit Field in Control - Enable this checkbox to use the mask when the user
edits the field in the grid. Otherwise the mask is only used prior to posting of the record.

Chapter 4 - Programming with InfoPower, Using InfoPower’s Picture Masks 39

This property is identical to the UsePictureMask property of the InfoPower edit control,
and is only placed in this dialog for convenience.

Design Mask - Click this button to create and test a new picture mask

Using the Design Picture Mask dialog
The Design Picture Mask dialog allows you to design a new picture mask that you can save to
the picture mask database. This dialog can be accessed by either clicking on the Design Mask
button in either the Select Picture Mask dialog, or from the Select Fields Dialog | Masks Tab
Page.

Figure 4.6 - Design Picture Mask Dialog

The following defines the controls in this dialog:

Picture Mask - Picture mask to be tested

Test Value - This button tests the currently entered Sample Value and checks if it is valid
with the picture mask. Since the Sample Value is continuously checked as you type into
it, this button may seem useless. However it is useful if you change the picture mask and
want to test the current Sample Value with the new Picture Mask.

Save Mask - Click this button to save your new picture mask to the InfoPower mask
database.

Verify Syntax - Click this button to ensure that the syntax of your picture mask is correct.

Restore Original - Click this button if you want to restore the picture mask to the value
before you made any changes.

40 Chapter 4, Programming with InfoPower , Using InfoPower’s Picture Masks

AutoFill - Enable this checkbox if you want to automatically fill during editing

Sample Value - Enter text into here to see your new picture mask in action.

Create and save a new picture mask:
To design a new picture mask you can follow these steps.

1. Enter your picture mask into the Picture Mask edit control. Note: If you want to start
from an existing picture mask, click on the icon.

2. Click on the Verify Syntax button to check that your picture mask syntax is correct.

3. Select your desired setting for the default AutoFill capabilities.

4. Now test your new picture mask by editing into the Sample Value edit control.

5. When satisfied with your mask, you can click on Save Mask button to save your mask
to the picture mask database.

6. Click on the OK button to use this picture mask in your InfoPower components. Your
picture mask is saved to a file named InfoPowerMasks.ini. You can configure this
location by editing the registry variable \Software\Woll2Woll\InfoPower\Masks
IniFile.

InfoPower change : InfoPower’s picture mask design tools now use an INI file to
store your custom picture masks. In the past a Paradox table was used to store these
settings in your IDE environment. However to remove the necessity of installing the
BDE in your design time environment, InfoPower no longer uses this Paradox table.

Remove an existing picture mask from the picture mask table:
From the Design Mask Dialog, click on the click on the icon to enter the Lookup
Picture Mask dialog. Then select the mask you wish to delete, and then click on the
Delete Mask button.

Chapter 4 - Programming with InfoPower, Determining the object names of the controls contained in
an InfoPower dialog 41

Figure 4.7 - Lookup Picture Mask Dialog

Tips
If your picture mask contains auto-fill capabilities, remember to set the AutoFill property to
True.

Determining the object names of the controls contained in an
InfoPower dialog

Many of the InfoPower components have an associated form or dialog. Within these forms are
many components which you many want to change the properties of. In order to accomplish
this, you can use the OnInitDialog event of the component and reference the objects contained
within the form. To find out the object names, you can open the associated .pas file that
contains the dialog. The names of these .pas files are documented in the OnInitDialog event,
or at the beginning of the event documentation for the component.

If you do not have the source code version of InfoPower, then perform the following steps to
generate a temporary form that contains all the components in the dialog.

42 Chapter 4, Programming with InfoPower , Using XP Themes with InfoPower

1. Open the associated .dfm file instead of the .pas file.

2. Perform Edit | Select All from the Delphi IDE menu to select all the contained
components.

3. Perform Edit | Copy from the Delphi IDE menu to copy the components to the clipboard.

4. Create a new form by select File | New Form from the Delphi IDE Menu.

5. Copy all the components to your newly created form with the menu selection Edit | Past.e

After performing the above steps you can view your newly created form to determine the object
names for every component in the InfoPower dialog.

Using XP Themes with InfoPower
InfoPower 4000 supports windows themes throughout its controls. To enable themes, you must
be using Delphi 7 or later and drop in a TXPManifest component into your application.
TXPManifest can be found in the Win32 component palette.

If you wish to disable themes for certain InfoPower components, you can set the
DisableThemes property to false for the intended component.

Chapter 5 - InfoPower Component Reference, Description of Reference 43

 C h a p t e r

5
InfoPower Component Reference

Description of Reference
This chapter of the InfoPower Developer’s Guide discusses the details of each InfoPower
component, the new properties and events added to it, properties and events that have been
modified or removed, along with how-to and tips sections for each component. It does not
discuss the properties or events that are available as part of the ancestor Delphi /C++
components, unless changes were made to them. If you are not familiar with Delphi’s built-in
data-aware components, their properties or events, please read through the Delphi User’s
Guide and Database Application Developer’s Guide before you begin working with the
InfoPower component library.

The InfoPower library contains native VCL components, many of which are based on Delphi’s
built-in data-aware components. Thus, when you are familiar with Delphi’s built-in
components, properties and events, you already know how to use most of the InfoPower
components—with no further training.

Several of the InfoPower components appear to use the same visual bitmap as their Delphi
counterparts, such as TwwDataSource, TwwTable and others. Upon closer inspection, you’ll
notice a + symbol in the upper right-hand corner of the InfoPower bitmaps. This is how you
can tell whether you are working with an InfoPower or Delphi/C++ Builder component.

This chapter is dedicated to describing each InfoPower component, along with their ancestry;
required supporting components; added properties, events and methods; required property
assignments; modified properties, events and methods; how-to examples; and tips.

44 Chapter 5, InfoPower Component Reference , TwwCheckBox

TwwCheckBox

 InfoPower integrates a versatile new checkbox control into its suite. Some of its
features include the following:

♦ Support for your own custom bitmaps for the checkbox glyphs

♦ Support for 3 states including integration with the InfoPower grid, record-view
components, and data inspector.

♦ Dynamic caption support – The text of the checkbox can change to reflect the
underlying value or mapped value.

♦ Custom framing and transparency support for a consistent look with other InfoPower
edit controls

Ancestor

TCustomCheckBox
 └─TwwCustomCheckBox
 └─TwwDBCustomCheckBox

Added Properties

Alignment
Assign this property to change the location of the text within the control. If Alignment is set
to taRightJustify, then the text is aligned on the right-hand side of the control. If Alignment is
set to taLeftJustify, then the text is aligned on the left-hand side of the control.

AllowGrayed
If AllowGrayed is set to True, the check box has three possible states: checked, unchecked, and
grayed. If AllowGrayed is set to False, the check box has only two possible states: checked and
unchecked.

Chapter 5 - InfoPower Component Reference, TwwCheckBox 45

AlwaysTransparent
Set this to true if you wish for the checkbox to be transparent even when it has the focus.
Normally when Frame.Enabled and Frame.Transparent are both true, the control is only
transparent when it does not have the focus. Note: This property has no effect unless
Frame.Enabled and Frame.Transparent are both true.

Caption
Assign a string to this property to assign the label that appears next to the checkbox. Note:
Assigning this property has no effect if DynamicCaption is set to true.

Checked
Use Checked to determine whether the check box is in the checked state.

Note: If the AllowGrayed property is True, you may find it more useful to use the State
property.

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

DisplayValueChecked
This is the value that the checkbox displays when the checkbox is checked. Note:
DynamicCaption must be true in order for the checkbox to display this value. If this value is
unassigned, then it displays the string assigned to ValueChecked.

DisplayValueUnchecked
This is the value that the checkbox displays when the checkbox is unchecked. Note:
DynamicCaption must be true in order for the checkbox to display this value. If this value is
unassigned, then it displays the string assigned to ValueUnchecked.

DynamicCaption
Set this to true if you wish for the checkbox to display the field value as its checkbox label,
instead of the static label indicated by the Caption property.

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.
Data Type: TwwEditFrame

Images
Assign this property if you wish to change the icons displayed by the checkbox. The first
image in the imagelist is used as the unchecked icon, and the second image is used as the
checked icon, and the third image is used as the grayed icon.
Data Type: TImageList

46 Chapter 5, InfoPower Component Reference , TwwCheckBox

Indents
Use Indents to change the relative placement of the icons and the text.

ButtonX Assign this property to specify the number of pixels to move the checkbox
icon to the left (negative value) or right (positive value).

ButtonY Assign this property to specify the number of pixels to move the checkbox
icon upward (negative value) or downward (positive value).

TextX Assign this property to specify the number of pixels to move the text to the
left (negative value) or right (positive value).

TextY Assign this property to specify the number of pixels to move the text upward
(negative value) or downward (positive value).

When the database field that the checkbox is bound to is null, blank, or doesn’t match the
ValueChecked or ValueUnchecked properties, then the checkbox displays its state according to
the NullAndBlankState property. See the Delphi documentation under TCheckboxState for a
description of its possible values.

NullAndBlankState
When the database field that the checkbox is bound to is null, blank, or doesn’t match the
ValueChecked or ValueUnchecked properties, then the checkbox displays its state according to
the NullAndBlankState property. See the Delphi documentation under TCheckboxState for a
description of its possible values.
DataType: TCheckBoxState

ReadOnly
Set this property to true to prevent the user from toggling the checkbox.

ShowFocusRect
When true, a focus rectangle is drawn around the text. You may wish to set this property to
false when using custom framing, as this can already give the end-user a visual cue to when
the checkbox has the focus.

ShowText
Set this property to false to hide the text of the checkbox. This may be useful to you if your
checkbox is embedded in the grid.

State
Indicates whether the check box is selected, deselected, or grayed.
Valid Values:

cbUnchecked The check box has no check mark.
cbChecked The check box has a check mark in it.
cbGrayed The check box has a check mark in it, but it is grayed.

Chapter 5 - InfoPower Component Reference, TwwCheckBox 47

ValueChecked
This is the value that the checkbox stores into the database when the checkbox is checked.

ValueUnchecked
This is the value that the checkbox stores into the database when the checkbox is unchecked.

Added Events

OnMouseEnter
Occurs when the mouse cursor passes from outside the control to inside the control.

OnMouseLeave
Occurs when the mouse cursor passes from inside the control to outside the control.

How-to

Dynamic Captions
Often the value stored in the database for a given field is a Boolean value that could be
represented as a ‘1’ or a ‘0’, ‘True’ or ‘False’, ‘Yes’ or ‘No’, etc. In these situations it is
often desirable for the checkbox caption associated with these values to be more descriptive,
or to reflect the actual value that is stored in the database.

For example: If you wished to display Male or Female instead of the value stored in the
database, then all you need is to do the following:

1) Set DynamicCaption to True.
2) Set the values of DisplayValueChecked and DisplayValueUnchecked to ‘Male’ and

‘Female respectively (noting to match them to the values that are stored in the
database).

Note: ValueChecked and ValueUnchecked should match the stored values in the database.

Hot-Track the CheckBox’s Caption
Use the OnMouseEnter and OnMouseLeave events to create a hot-tracking effect on the label
of the caption. To do this put the following code in the OnMouseEnter and OnMouseLeave
events of your TwwCheckbox.

procedure TForm1.wwCheckBox1MouseEnter(Sender: TObject);
begin
 (Sender as TwwCheckBox).Font.Color := clBlue;
 (Sender as TwwCheckBox).Font.Style := [fsUnderline];
end;

procedure TForm1.wwCheckBox1MouseLeave(Sender: TObject);
begin
 (Sender as TwwCheckBox).Font.Color := clWindowText;

48 Chapter 5, InfoPower Component Reference , TwwCheckBox

 (Sender as TwwCheckBox).Font.Style := [];
end;

Chapter 5 - InfoPower Component Reference, TwwClientDataset 49

TwwClientDataset

 The non-visual TwwClientDataset component allows you to define a database-
independent, distributed dataset that supplies data to one or more of the other InfoPower visual
interface components placed on your form

Note: This component is maintained for backwards compatibility. InfoPower allows you to
directly use TClientDataSet without having to use the TwwClientDataSet. You may still wish
to use the TwwClientDataSet for backwards compatibility, or if you want to store the design-
time picture mask definitions into the dataset instead of the visual control.

Ancestor
TClientDataset.

Required supporting components
None.

Added Properties

ControlType
This property holds information about the type of control used to display a field if the field is
contained within a grid component. The default value is Field. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) To change this property at runtime, see the
SetControlType method of the TwwDBGrid component.
Data Type: (Internal to InfoPower)

PictureMasks
This property holds information about a field’s picture mask. See Using InfoPower’s Picture
Masks in Chapter 4 for more details.
Data Type: TStrings
Valid Values: (Internal to InfoPower)

ValidateWithMask
See the documentation for ValidateWithMask under the TwwTable component
Data Type: Boolean

Modified properties
None.

50 Chapter 5, InfoPower Component Reference , TwwClientDataset

Added Events

OnFilter
This function is equivalent to OnFilterRecord. For consistency with other InfoPower datasets
we have included this event. See the documentation for OnFilter under the TwwTable
component.

OnInvalidValue
See Using InfoPower’s Picture Masks in chapter 4.

Added Methods

wwFilterField
See the documentation for wwFilterField under the TwwTable component

How-to
The TwwClientDataset component is inherited from Delphi’s TClientDataset, so please refer
to your Delphi manual for more information about this component. Since InfoPower’s
TwwClientDataset component is inherited from Delphi’s TClientDataset component, you are
provided with 100% backward compatibility. Thus, you can safely replace your use of
TClientDataset with TwwClientDataset at any time.

Chapter 5 - InfoPower Component Reference, TwwController 51

TwwController

 The non-visual TwwController component allows you to centralize your framing
properties for an application into a single component. Assign the controller property of each
InfoPower or 1stClass component that you want to use the controller. If you modify the
framing in the controller during program execution, you can call the ApplyFrame method to
have the controller apply the new framing properties to each edit control attached to the
controller.

Ancestor
TComponent

Required supporting components
None.

Added Properties

Frame
This property contains the framing properties for the controller. Each control that has its
controller property set to this component will use these framing properties instead of the
properties of its own Frame. See Chapter 4 for more information on customizing the button
effects.
Data Type: TwwEditFrame

ButtonEffects
This property contains the button effect properties for the controller. Each control that has a
button that can be clicked on has specific display attributes that can be customized. See
Chapter 4 for more information on customizing the button effects.
Data Type: TwwButtonEffects

Added Methods

ApplyFrame
If you modify the framing in the controller durin program execution, you can call the
ApplyFrame method to have the controller apply the new framing properties to each edit
control attached to the controller.

52 Chapter 5, InfoPower Component Reference , TwwDataInspector

TwwDataInspector

 InfoPower provides a robust component that allows you to hierarchically edit one or
more records, consisting of one or more datasets. This component allows you to display
records, similar to the way you edit/view an object in the Delphi object inspector. It has
substantial advantages over more traditional ways of editing, including the ability to group
related fields together (even from different datasets), provide a hierarchical view, conserve
screen real-estate, embed custom controls, display a background image or tile, and much more.
See the demo in the \ip4000\demos\inspector directory

This component can also be used without a datasource, which significantly increases the way
this component can be used. InfoPower 4000 also adds an Enabled property for each inspector
item.

InfoPower’s versatile data inspector includes the following capabilities:

♦ Support for multi-record display: InfoPower’s versatile data inspector can
now display multiple records vertically, bringing your end-users a smart
alternative to the left-right editing of a traditional grid. To support multiple
records, you will need to set the DataColumns property. You may also want
to set the IndicatorRow.Enabled property.

♦ Improved custom control integration and flexibility : InfoPower allows
you to embed a wider variety of controls in the inspector. You can now even
embed non-InfoPower controls, such as the TDBImage. The inspector also
allows each custom control to do their own painting in the grid so that even
graphics, richedits, etc. will be displayed for every row in the grid without
any code on your part.

♦ Background texture tiling: InfoPower allows your applications to further
impress by adding support for background texture tiling. The component
takes care of blending your tile with the color of the inspector region, giving
you a truly impressive and professional display. To enable background
texture tiling see the PaintOptions property.

♦ Alternating colors for rows: New property to automatically alternate the
row colors and to highlight the active column See the
PaintOptions.AlternatingRowColor and AlternatingRowRegions properties.

♦ Enhanced hierarchical display: When items are expanded., the inspector
now paints tree lines supporting an elegant tree display. To enable the tree-
lines set the Options | ovShowTreeLines property to True.

Chapter 5 - InfoPower Component Reference, TwwDataInspector 53

Ancestor
TCustomGrid

Required property assignments
None

Overview of TwwDataInspector architecture
The Data Inspector’s display consists of one caption column and one or more data columns.
The first column defines the labels, and the remaining column display the data. The Data
Inspector uses a TCollection to define the attributes for each row of the data inspector, as a
TCollectionItem defines each row in the data inspector

The data type of the TCollection is TwwInspectorCollection, and the collection items are of
type TwwInspectorItem.

54 Chapter 5, InfoPower Component Reference , TwwDataInspector

Defining the data inspector’s items
To customize each row of the data inspector, dbl-click the control at design time. The
following designer form is then displayed.

The Data Inspector component contains a hierarchical collection of one or more inspector
items. From here you can click on an item, and then by using the Delphi object inspector you
can customize any of the collection item properties of the selected TwwInspectorItem.

Customizing the custom control: If you have previously assigned the CustomControl
property, you can select this control by holding down the ALT key before you click on the
inspector item. After doing so, the object inspector will show you the properties and events of
the custom control.

New Item: Click this button to add a new item to the data inspector. The new item is inserted
as the last child of the currently selected item’s parent. If the selected item is a root node, then
an item is added to the end of the list.

New Subitem: Click this button to add a new child item to the currently selected item in the
data inspector. The new item is inserted as the last child of the currently selected item.

Delete Item: Deletes the currently selected item and its children from the data inspector.

Chapter 5 - InfoPower Component Reference, TwwDataInspector 55

Move Up: Moves the currently selected item up one. You can also drag an item to another
location by clicking the item with the mouse and then dragging the mouse to the location you
wish to move to. If you hold the Shift key when you release the mouse, the item becomes a
child of the destination node. Otherwise the item becomes the prior sibling of the destination
node.

Move Down: Moves the currently selected item down one. You can also use drag and drop as
described above.

Add Fields: Click this button to create items from the list of fields associated with the
inspector’s datasource. If you need to add fields from other datasources, then click the New
Item button, followed by setting its datasource, datafield, and caption properties.

Added properties

ActiveEdit (Runtime only)
ActiveEdit returns the current editor active in the data inspector. This value will vary
depending upon which row is active. If you have assigned a custom control to the active row,
then it returns the handle to this custom control. If you are using a picklist, then it returns the
TwwDBComboBox associated with displaying this picklist.
Data Type: TWinControl

ActiveItem (Runtime only)
This property returns the item associated with the currently active row in the inspector. You
can also set this property to change the active row. See the methods GetItemByCaption,
GetItemByField, GetItemByTagString, and GetItemByRow to help retrieve a handle to a
TwwInspectorItem.
Data Type: TwwInspectorItem

ActiveRows (Runtime only)
This property returns the number of rows that are currently displayed by the inspector.
Data Type: Integer

ButtonOptions
This property defines the bitmaps used to display the expand and collapse buttons of the data
inspector.

CollapseGlyph
Assign a TBitmap to this property if you wish to override the appearance of the collapse
button. If this property is unassigned, then the button is displayed as .

ExpandGlyph
Assign a TBitmap to this property if you wish to override the appearance of the expand
button. If this property is unassigned, then the button is displayed as .

56 Chapter 5, InfoPower Component Reference , TwwDataInspector

CaptionColor
The CaptionColor property defines the background of cells that display the label for a data
inspector item.

CaptionFont
Font used to display text in the caption column
Data Type: TFont

CaptionIndent
Number of pixels to indent when painting the text in the column associated with the captions.
Increase this value to move the caption text more to the right of its default placement.
Data Type: Integer

CaptionWidth
Set this property to change the width of the caption column within the data inspector. You can
also size the column by using the mouse to drag the line separating the columns.
Data Type: Integer

Canvas (Runtime only)
TCanvas used to paint the data inspector. You may wish to refer to this property when using
the OnDrawDataCell or OnDrawCaptionCell event.
Data Type: TCanvas

DataColumns
Set DataColumns to a value greater than 1 to display multiple data columns of records in the
inspector when the DataSource property is assigned.
Data Type: Integer

DataSource
Use DataSource to specify the data source component through which the data from a dataset
component is provided to the TwwDataInspector
Data Type: TDataSource

DefaultRowHeight
Set DefaultRowHeight to change the default height of the rows in the data inspector. This
property defaults to 0, which tells the control to compute the row height based on the height of
the text give the control’s font. If you assign an individual row’s height through its
TwwInspectorItem.CellHeight property, then the DefaultRowHeight property is ignored for
that row.
Data Type: Integer

DisableThemes

Chapter 5 - InfoPower Component Reference, TwwDataInspector 57

If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

DottedLineColor
The DottedLineColor property defines the color of dotted lines within the data inspector.
Dotted lines appear around each cell’s borders when the inspector’s LineStyleCaption or
LineStyleData properties are set to ovDottedLine.
Data Type: TColor

IndicatorRow
IndicatorRow defines the attributes for the indicator row at the top of the inspector. This
property is new in InfoPower, and is designed to indicate to the end-user which column is the
active record.
Data Type: TwwInspectorIndicatorRow

Caption Assign this property to display text in caption column of the
indicator row.
Data Type: String

Color Sets the background color of the indicator row. See the
PaintOptions property if you wish to blend this color with a tile.
Data Type: TColor

Enabled When true, the inspector display a row at the top to indicate which
column is the active record.
Data Type: Boolean

Height Assign this property to change the height of the indicator row. This
property defaults to 0, which means that the indicator row uses the
default row height.
Data Type: Integer

TextAlignment Assign this property if you have assigned the caption property and
want to align its text
Data Type: TAlignment

Items
This property contains a collection of items assigned to the data inspector. Each collection
item is of type TwwInspectorItem. Clicking on this property from the object inspector brings
up InfoPower’s data inspector collection editor. See the “Defining the Data Inspector's Items”
topic discussed earlier in this section. See the documentation under TwwInspectorCollection
and TwwInspectorItem for detailed documentation on these data types.
Data Type: TwwInspectorCollection

58 Chapter 5, InfoPower Component Reference , TwwDataInspector

InplaceEditor (Runtime Only)
The default inplace editor used when editing cells. The default inplace editor not used if you
have assigned a custom control, picklist, or checkbox to the field. Additionally is not used
when a datetimepicker control is displayed in the cell. See the ActiveEdit property for a
generic way of retrieving the editor for the active row.
Data Type: TwwDataInspectorEdit

LineStyleCaption
The style of the borders for each cell in the caption column can be set to any one of the
following:
Data Type: TwwDataInspectorLineStyle
Valid Values: {ovNoLines,ovDottedLine,ovLight3DLine,ovDark3Dline,ovButtonLine}

ovNoLines No lines are displayed around the cells
ovDottedLine Dotted lines are drawn around the cells
ovLight3Dline A light line is drawn around each cell.
ovDark3Dline A dark line is drawn around each cell
ovButtonLine A line is drawn around the cell so that the cell appears like a button.

LineStyleData
The style of the borders for each cell in the data column can be set to any one of the values,
ovNonLines, ovDottedLine, ovLight3Dline, ovDark3Dline, ovButtonLine. See the
LineStyleCaption property for a further description of these line styles.
Data Type: TwwDataInspectorLineStyle

Options
Options allow you to customize the appearance and certain behavior of the data inspector.
Data Type: TwwDataInspectorOptions
Valid Values: {ovColumnResize, ovRowResize, ovTabExits, ovEnterToTab,
ovHighlightActiveRow, ovHideVertDataLines, ovCenterCaptionVert, ovTabToVisibleOnly,
ovShowTreeLines, ovShowCaptionHints, ovShowCellHints, ovFillNonCellArea,
ovActiveRecord3DLines, ovAllowInsert, ovHideCaptionColumn, ovHideVertFixedLines}

ovColumnResize When true, the inspector allows the end-user to resize the
columns.

ovRowResize When true, the inspector allows the end-user to resize the rows
whose resizable property is true. See also the
TwwInspectorItem.Resizeable property.

ovTabExits When false, the inspector allows the user to cycle through the
rows by using tab and shift-tab. Focus is automatically moved
to the next inspector item whose TabStop property is true. See
also the ovTabToVisibleOnly property.

ovEnterToTab When true, the enter key is converted to a tab.

Chapter 5 - InfoPower Component Reference, TwwDataInspector 59

ovHighlightActiveRow When true, the caption column for the active row is painted
with a recessed border to help signify which row has the focus.
Defaults to True. You can also customize the way an active row
is painted by using the OnDrawCaption event.

ovHideVertDataLines When true, the vertical lines for a multiple column
datainspector control will not be drawn. Default is False.

ovCenterCaptionVert When True, the text in the caption column is centered
vertically. When False, the text is positioned at the top of the
cell.

ovTabToVisibleOnly When True, the inspector will only tab to rows that are either a
root item, or items that are part of a currently expanded branch.
When ovTabToVisibleOnly is False, tabbing will advance to
the next item whose tabstop property is true, and if necessary
expand any items so that the item is visible.

 This property is ignored if ovTabExits is True.

ovShowTreeLines When True, the inspector will display dotted lines between the
inspector items. This provides a more elegant and tree-like
display. See also the TreeLineColor property to customize the
color of the tree lines.

ovShowCaptionHints When True, the inspector will display the full caption as a
tooltip when the mouse is over the caption. This allows the end-
user to see the entire caption without having to enlarge the
caption column.

ovShowCellHints When True, the inspector will display the full text of the data
cell as a tooltip when the mouse is over the caption. This allows
the end-user to see the entire text of the cell without having to
enlarge the column. Note: If you have assigned a
customcontrol to the cell, then the tooltip is only displayed if
CustomControlAlwaysPaints is set to false.

ovFillNonCellArea When True, the inspector will fill the bottom non-cell area with
the fixed color or Column1 blended bitmap defined by the
PaintOptions property.

ovActiveRecord3DLines When this property is true, the active record is painted with 3D
lines to help clarify its position with respect to the other
records. You may also want to use this property in conjunction
with the PaintOptions | ActiveRecordColor property.

ovAllowInsert When this property is true and there are no records in the
TwwDataInspector this property will allow the enduser to
edit/insert a new record. Currently this property is only

60 Chapter 5, InfoPower Component Reference , TwwDataInspector

applicable when you have an empty inspector. In the future,
this property may accommodate other cases.

ovHideCaptionColumn When this property is true, the Caption Column will be set to a
width of zero effectively hiding it. When False, the first
column which is the caption column will be visible.

ovHideVertFixedLines When this property is true, the vertical lines of the grid in the
indicator row will be hidden.

PaintOptions
Use this property to really polish the look of your grid or inspector component. Note: If you
are referencing this property with code, then add the unit wwPaintOptions to your form’s uses
clause.
Data Type: TwwPaintOptions

ActiveRecordColor Set this property to define the color that the inspector or grid use to

paint the background of the data cells for the active record. This
defaults to clNone, which means that the color of the control is used
to paint the background.

AlternatingRowColor This defines the color that the inspector or grid use to paint the
background for every other row. This property defaults to clNone,
which means that the row colors are not alternated. See also the
property AlternatingRowRegions to configure which section will
paint with the alternating color.

AlternatingRowRegions Set this property to enable/disable the alternating color support
within the grid or inspector.

arrFixedColumns Enable alternating colors in the fixed columns

arrDataColumns Enable alternating colors in the data cells

arrActiveDataColumn Enable alternating colors for the active record column.
This property only applies when using a data inspector. It
is ignored when using a grid.

BackgroundBitmap Assign this property to enable a background tile for the inspector or
grid. You should make your tiles small so that your executables do
not become large. We do not recommend non-tiled backgrounds as
this may slow the performance of your grid’s painting.

Note: When using non-tiled backgrounds, you may want to set
FastRecordScrolling to false. For more information see the
property FastRecordScrolling.

 Data Type: TPicture

Chapter 5 - InfoPower Component Reference, TwwDataInspector 61

BackgroundDrawStyle Set this property to change the way the background bitmap is
drawn.

bdsTile Paint the background bitmap as a tile

bdsStretch Stretches the background bitmap into the control’s client area.

bdsTopLeft Paints the background bitmap starting at the top left of the control.

bdsCenter Paints the background bitmap centered within the grid or inspector.

BackgroundOptions Use this property to control how and where the background bitmap
is painted. You may wish to enable the blending flags as they allow
your grid or inspector to provide stunning and professional visual
effects.

Note: the background blending is automatically disabled when
running on systems with less than 256 colors.

coFillDataCells When true, the data area is filled with the background
bitmap. Set this to false to prevent the background from
being used in the data area.

coBlendFixedRow When true, the fixed row is painted with a blended bitmap.

The background bitmap is blended with the TitleColor
(TwwDBGrid), or IndicatorRow.Color
(TwwDataInspector).

coBlendFixedColumn When true, the fixed column is painted with a blended

bitmap. The background bitmap is blended with the
TitleColor (TwwDBGrid), or CaptionColor
(TwwDataInspector).

coBlendActiveRecord When true, the active record is painted with a blended

bitmap. The background bitmap is blended with the color
defined by PaintOptions.ActiveRecordColor. This property
is not currently supported for the TwwDBGrid.

coBlendAlternatingRow When true, the alternating row color

(PaintOptions.AlternatingRowColor) is blended with the
background bitmap before it is painted into the grid or
inspector.

FastRecordScrolling Set this to true to force the grid or inspector to repaint its whole

contents after any scroll operations take place. This will reduce the
performance of your control’s painting during scrolling operations,
but will ensure that your grid or inspector’s background do not shift
position after the scrolling takes place.

62 Chapter 5, InfoPower Component Reference , TwwDataInspector

For many tiled backgrounds, FastRecordScrolling can be left as False as the effect of tile being
shifted does not harm the visual effect of the tile. If you are not using a tile, but instead have
set BackgroundDrawStyle to something besides bdsTile, then you will likely want to set
FastRecordSrolling to False.

PictureMaskFromDataSet
Set this to false if you wish for the design time settings of your picture masks to be retrieved
from the related dataset component. This property is only relevant if you are using TwwTable,
TwwQuery, TwwQBE, TwwStoredProc, or TwwClientDataSet and is ignored otherwise. It
may be convenient for you to retrieve the picture masks in the dataset if you wish to use the
dataset’s ValidateWithMask property, or wish to use masks you have previously defined in the
dataset.
Data Type: Boolean

Note: When this property is false, your picture masks assigned through the data inspector’s
designer are not used. Instead the dataset’s picturemasks are used.

SetFocusTabStyle
This property controls which row becomes the active row when the user tabs to the control. If
SetFocusTabStyle is set to itsPreserveActiveItem, then the inspector’s active row is restored to
its last value when it lost focus. If SetFocusTabStyle is set to itsResetActiveItem, then the
active row is reset to the first row when the inspector receives focus.
Data Type: TwwInspectorTabSetFocusStyle

TreeLineColor
When you enable Options | ovTreeLines, the inpector will paint tree lines to more clearly
reveal the tree-like structure of the inspector. You can set this property to change the color of
the tree lines.

Added Events

OnAfterSelectCell
The OnAfterSelectCell event occurs after focus moves to a new row.

Sender : TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with row that received
focus.

OnBeforePaint
This event remains for backward compatibility, since now you can load a bitmap or tile with
the PaintOptions property at design-time.

Write an OnBeforePaint event handler to paint a background image to the inspector. The
parameters for this event are as follows:

Sender: TwwDataInspector The TwwDataInspector associated with this event

Chapter 5 - InfoPower Component Reference, TwwDataInspector 63

Example 1: The following example paints a background image to the inspector. The bitmap
originates from the file ‘Yourbitmap.bmp’.

var i, j: integer;
 ABitmap: TBitmap;
begin
 ABitmap := TBitmap.Create;
 ABitmap.LoadFromFile('Yourbitmap.bmp');

 if ABitmap.Width = 0 then exit;
 for i := 0 to Sender.Width div ABitmap.Width do
 for j := 0 to Sender.Height div ABitmap.Height do
 Sender.Canvas.Draw(i*ABitmap.Width,
 j*ABitmap.Height,ABitmap);
 ABitmap.Free;
end;

Example 2: Using the 1stClass TfcImager as the background

Example: If you also own Woll2Woll’s 1stClass product, you may want to use the 1stClass
imager for enhanced background effects. Just drop a TfcImager into your form, load its Picture
property, and set the imager’s properties to reflect how the image should be painted. Then to
have the image painted into the inspector’s client area, use the following code in the
OnBeforePaint event.

with fcimager1 do begin
 if WorkBitmap.Empty then UpdateWorkBitmap;
 WorkBitmap.TileDraw(Sender.Canvas, Sender.ClientRect);
end;

OnBeforeSelectCell
The OnBeforeSelectCell event occurs immediately before focus moves to a new row.

Sender : TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the row that received
focus.

var CanSelect: Boolean Set to False to prevent the row from receiving focus

OnCalcDataPaintText
Write an OnCalcDataPaintText handler to change the text displayed in the data column for a
row. This event is useful when you wish to calculate the displayed text based on other criteria.

Sender : TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell to be
painted.

var PaintText: String Assign this property to change the text that is displayed
for the cell.

Example: The following computes the text of an item based on the captions of the enabled
child items (as defined by their checkbox). This example assumes that each child uses a
checkbox with True and False values.

64 Chapter 5, InfoPower Component Reference , TwwDataInspector

 { Paint parent item based on the captions of the enabled child items }
 if (Item.Caption = 'Non-focus Borders') or
 (Item.Caption = 'Focus Borders') then
 begin
 CurItem:= Item.GetFirstChild;
 PaintText:= '';
 while CurItem<>nil do begin
 if curItem.checked then
 begin
 if PaintText<>'' then PaintText:= PaintText + ',';
 PaintText:= PaintText + curItem.Caption;
 end;
 CurItem:= CurItem.GetNextSibling;
 end;
 PaintText:= '[' + PaintText + ']';
 end;

OnCanCollapse
Write an OnCanCollapse handler to prevent a node from being collapsed by the user. This
event is fired immediately after the end-user has tried to collapse an item, but before a node is
actually collapsed. The end-user can collapse an item by clicking on its collapse button, or
using a keyboard shortcut to collapse the node. The keyboard shortcuts include Ctrl-LeftArrow
or LeftArrow (ReadOnly items). Set CanCollapse to false to prevent the item from being
collapsed.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell to be
collapsed.

CanCollapse: Boolean Set CanCollapse to false to prevent the item from being
collapsed.

OnCanExpand
Write an OnCanExpand handler to prevent a node from being expanded by the user. This
event is fired immediately after the end-user has tried to expand the item, but before a node is
actually expanded. The end-user can expand an item by clicking on its expand button, or using
a keyboard shortcut to expand the node. The keyboard shortcuts include Ctrl-RightArrow or
RightArrow (ReadOnly items). Set CanExpand to false to prevent the item from being
expanded and showing its children.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell to be
expanded.

CanExpand: Boolean Set CanExpand to false to prevent the item from being
expanded and showing its children.

OnCollapsed
Write an OnCollapsed event handler to perform your own action after an item has collapsed
so that its children are no longer visible to the end-user.

Chapter 5 - InfoPower Component Reference, TwwDataInspector 65

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell that has
collapsed.

OnCreateDateTimePicker
Write an OnCreateDateTimePicker event handler to customize the properties of the default
datetimepicker used by the inspector. The default datetimepicker is automatically used by any
row bound to a TDateTimeField. To disable the default datetimepicker for a row, set the item’s
Options | iioAutoDateTimePicker to false. The parameters for this event are as follows.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ADateTimePicker: TwwDBCustomDateTimePicker

 The default datetimepicker. You can set its properties if
you wish to change the properties of this control.

OnCreateDefaultCombo
Write an OnCreateDefaultCombo event handler to customize the properties of the default
combobox used by the inspector when your item’s PickList properties are assigned.

Sender: TwwDataInspector The TwwDataInspector associated with this event

Combo: TwwDBComboBox The default combobox auto-created and used by the
inspector. You can set its properties if you wish to change
the properties of this control.

OnCreateHintWindow
Use this event to customize the painting of the hint window. This event is fired before the hint
window is actually displayed. The parameters are as follows:

Sender : TObject TwwDataInspector that is associated with this event.

HintWindow: TwwInspectorHintWindow

 Hint window that was created. You can refer to its Canvas
property to customize how the hint window is painted.

AField: TField Field that the hint window is displaying information about.

 R: TRect Rectangle coordinates of the hint window

var WordWrap: Boolean Set WordWrap to True to cause the hint window to wordwrap

var MaxWidth: integer Set MaxWidth to limit the width of the hint window

var MaxHeight: integer Set MaxHeight to limit the height of the hint window

var DoDefault: Boolean Set DoDefault to False if you wish to prevent the
datainspector from painting the hint window.

66 Chapter 5, InfoPower Component Reference , TwwDataInspector

Example: The following code attached to this event makes the hint window’s background
clYellow.

HintWindow.Color := clYellow;
HintWindow.Canvas.Brush.color := clYellow;

OnDrawCaptionCell
Write an OnDrawCaptionCell event handler to customize the painting of the caption cells in
the inspector. If you are just customizing the cells in the data column, you should instead use
the OnDrawDataCell event. The parameters for this event are as follows:

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell to be
painted.

ASelected: Boolean True, if the row to be painted is the active row

ACellRect: TRect ACellRect is the coordinates of the cell’s rectangle with
respect to the Inspector’s top left position.

var ACaptionRect: TRect ACaptionRect contains the rectangle coordinates of the
area that inspector is to paint the text to. This differs
from ACellRect as the text rectangle does not include the
area to the left of the text.

 You may also with to set ACaptionRect if you wish for
an individual cell’s caption to be placed at a different
location. See the example described later in this event.

var DefaultDrawing: Boolean Set to False to prevent the default painting from taking
place.

Example: The following example paints an image from an imagelist to the left of caption. In
this example it paints the image for the item associated with the row whose caption is
‘RichEdit’.

procedure TForm1.wwDataInspector1DrawCaptionCell(Sender: TwwDataInspector;
 ObjItem: TwwInspectorItem; ASelected: Boolean; ACellRect: TRect;
 var ACaptionRect: TRect; var DefaultTextDrawing: Boolean);
begin
 if ObjItem.Caption = 'RichEdit' then begin
 { Paint cell using ImageIndex of 3 }
 Imagelist1.Draw(Sender.Canvas, CaptionRect.Left, ACaptionRect.Top, 3);
 ACaptionRect.Left:= ACaptionRect.Left + ImageList1.Width+1;
 end
end;

Chapter 5 - InfoPower Component Reference, TwwDataInspector 67

OnDrawDataCell
Write an OnDrawDataCell event handler to customize the painting of the data cells in the
inspector. If you are just customizing the cells in the caption column, you should instead use
the OnDrawCaptionCell event. The parameters for this event are as follows:

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell to be
painted.

ASelected: Boolean True, if the row to be painted is the active row

ACellRect: TRect ACellRect is the coordinates of the cell’s rectangle with
respect to the Inspector’s top left position.

var DefaultDrawing: Boolean Set to False to prevent the default painting from taking
place.

Example: The following example paints the data cell containing the field ‘State’ with a yellow
background if it’s value is ‘CA’.

 with (Sender as TwwDataInspector) do
 begin
 if (ObjItem.Field<>nil) and (ObjItem.field.fieldname='State') and
 (ObjItem.Field.asstring='CA') then
 begin
 Canvas.brush.color:= clYellow;
 Canvas.fillrect(ACellRect);
 end
 end;

Example: The following example paints with a yellow font the data cells which have their
item’s readonly property as true.

if Objitem.readonly then sender.canvas.font.color:= clyellow;

OnDrawIndicatorCell
Write an OnDrawIndicatorCell event handler to customize the painting of the indicator cells
in the inspector. The IndicatorRow property must be enabled and the DataColumns property
must be greater than 1.

The parameters for this event are as follows:

Sender: TwwDataInspector The TwwDataInspector associated with this event.

ACol: Integer ACol indicates which indicator column is being painted..

ACellRect: TRect ACellRect is the coordinates of the cell’s rectangle with
respect to the Inspector’s top left position.

var DefaultDrawing: Boolean Set to False to prevent the default painting from taking
place.

Example: The following example paints the indicator column cell red when it is the active
column of the TwwDataInspector control.

68 Chapter 5, InfoPower Component Reference , TwwDataInspector

procedure TForm1.wwDataInspector1DrawIndicatorCell(Sender: TwwDataInspector;
ACol: Integer; ACellRect: TRect; var DefaultDrawing: Boolean);
begin
 if Sender.Col=ACol then begin
 Sender.Canvas.Brush.Color := clRed;
 Sender.Canvas.FillRect(ACellRect);
 end;
end;

OnExpanded
Write an OnExpanded event handler to perform your own action after an item has expanded
to show its children.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem associated with the data cell that has
expanded

OnItemChanged
Write an OnItemChanged event handler to perform your own action after the user has
modified the text for a row.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem that has been changed.

NewValue: String The new value of the row’s data

OnTopLeftChanged
Write an OnTopLeftChanged event handler to perform any action when the inspector scrolls
resulting in the top row changing.

OnValidationErrorUsingMask
Write an OnValidationErrorUsingMask event handler to perform any custom action after the
user tries to leave the cell with a value that does not satisfy the picture mask constraints
assigned for the cell.

The default behavior is to raise an exception with the message “Invalid input value. Use escape
key to abandon changes”.

The parameters are as follows:

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem whose edited value does not satisfy
the picture mask constraints

Var Msg: String You can set this value to change the actual message used
by the default error handler.

Chapter 5 - InfoPower Component Reference, TwwDataInspector 69

Var DoDefault: Boolean Set this to False to prevent the default handler from
executing. The default error handler raises an exception
with the message defined by Msg

Example: The following example changes the error message from the default string to your
own message.

procedure TForm1.wwDataInspector1ValidationErrorUsingMask(
 Sender: TwwDataInspector; Item: TwwInspectorItem;
 var Msg: String; var DoDefault: Boolean);
begin
 Msg:= 'Characters are not valid!';
end;

Added Methods

BeginUpdate
Call this method to suspend painting operations to the inspector. You may wish to call this
method if you are performing many lengthy operations on the inspector as this may improve
the performance of those operations.
procedure BeginUpdate;

EndUpdate
Call this method to resume painting operations to the inspector after a call to BeginUpdate has
suspended them. Set Repaint to true if you wish for the entire tree inspector to be repainted.
procedure EndUpdate(Repaint: boolean = false);

GetFirstChild
Call this method to get the first child of the inspector. If VisibleItems is true, this method
ignores items whose Visible property is false.
function GetFirstChild(VisibleItemsOnly: boolean = True):
TwwInspectorItem;

GetItemByFieldName
Returns the TwwInspectorItem associated with the field name specified by AFieldName
Function GetItemByFieldName(AFieldName: string): TwwInspectorItem;

GetItemByRow
Returns the TwwInspectorItem associated with the row specified by ARow
Function GetItemByRow(ARow: integer): TwwInspectorItem;

GetItemByCaption
Returns the TwwInspectorItem associated whose Caption property matches the parameter
ACaption.
Function GetItemByCaption(ACaption: string): TwwInspectorItem;

70 Chapter 5, InfoPower Component Reference , TwwDataInspector

GetItemByTagString
Returns the TwwInspectorItem associated whose TagString property matches the parameter
ATagString.
Function GetItemByTagString(ATagString: string): TwwInspectorItem;

GetRowByItem
Returns the row number a TwwCollectionItem is appearing in for the inspector.
Function GetRowByItem(AItem: TwwInspectorItem): integer; virtual;

HaveVisibleItem
Returns True if the inspector has at least one visible item.
function HaveVisibleItem: boolean;

InvalidateRow
Call this method to invalidate a row in the inspector so that it is repainted.
procedure InvalidateRow(ARow: integer);

MouseToCell
This event converts the screen coordinates defined by the parameter X,Y to inspector cell
coordinates in ACol, ARow. You may wish to use this method if you want to determine which
row and column of the inspector the mouse is over.
procedure MouseToCell(X, Y: Integer; var ACol, ARow: Longint);

MouseToItem
This event returns the inspector item correlating with the screen coordinates defined by the
parameters X,Y. You may wish to use this method if you want to determine which item is
associated with the mouse position.
function MouseToItem(X, Y: Integer): TwwInspectorItem;

How To

Set the active row in the inspector
You can set the active row in the inspector based on a number of different properties. Use the
GetItemByFieldName, GetItemByRow, GetItemByCaption, and GetItemByTagString methods
to return an item based on the information you have. Then set the inspector’s ActiveItem
property.

with wwDataInspector1 do
begin
 ActiveItem:= GetItemByCaption('MyCaption');
end

Chapter 5 - InfoPower Component Reference, TwwDataInspector 71

Embedding 3rd Party Controls.
Each item of the TwwDataInspector can have a custom control attached to it. Many 3rd Party
controls will work right away, but testing is required to see how well those controls work in
the datainspector. This is especially true if you are using the controls in a data-aware multi-
column TwwDataInspector. When assigning the control to the item at design-time all you
need to do is select the control from the dropdown list in the object inspector for that particular
item.

Hide the Caption Column
To hide the caption column all you need to do is set the Options | ovHideCaptionColumn to
True. This is especially useful when embedding a TwwDataInspector in the TwwDBGrid.
See the TwwDBGrid How To section for an example of this.

Add a background image
See the PaintOptions property

Conditionally color the items
See the examples in the inspector’s OnDrawDataCell event.

Iterate through the items
See the example in the method GetNext

Change the expand and collapse glyphs used by the inspector
See the ButtonOptions property

Associate a picklist with an inspector item.
See the TwwInspectorItem PickList property

Display a checkbox for an item
See the TwwInspectorItem.PickList.DisplayAsCheckbox property. Alternatively you can embed
a TwwCheckbox control as a custom control by using the CustomControl property.

72 Chapter 5, InfoPower Component Reference , TwwInspectorCollection

TwwInspectorCollection
The following methods are part of TwwInspectorCollection, which you can use to manipulate
the inspector’s collection of items during runtime. See also TCollection for other methods
inherited from the base class TCollection.

Ancestor
TCollection

Added Properties
None

Added Methods

Add
Call this method to add a new TwwInspectorItem to the data inspector’s collection of items.
The return value is the inspector item that was added.
function Add: TwwInspectorItem;

Example: The following example creates 50 rows in the data inspector, with each row being
displayed as a checkbox.

for i:= 1 to 50 do begin
 with wwdatainspector1.items.Add do
 begin
 Caption:= 'Checkbox #' + inttostr(i);
 PickList.DisplayAsCheckbox:= True;
 PickList.Items.Add('True');
 PickList.Items.Add('False');
 end
end;
wwdatainspector1.invalidate;

LoadFromFile
Call this method to load the current information contained in the inspector’s collection from a
file. This can be useful if your inspector is not tied to a datasource. By calling this method and
the SaveToFile method, you can save and load the user’s runtime changes.
procedure LoadFromFile(const FileName: string);

LoadFromStream
Call this method to load the current information contained in the inspector’s collection from a
file. This can be useful if your inspector is not tied to a datasource. This method should be

Chapter 5 - InfoPower Component Reference, TwwInspectorCollection 73

used in conjunction with the SaveToStream method. See the Delphi documentation on
TStream for more information on stream manipulation.
procedure LoadFromStream(s: TStream);

Insert
Call this method to insert a new TwwInspectorItem to the data inspector before the item
specified by index.
function Insert(index: integer): TwwInspectorItem;

SaveToFile
Call this method to save the current information contained in the inspector’s collection to a
file. This can be useful if your inspector is not tied to a datasource. By calling this method and
the LoadFromFile method, you can save and load the user’s runtime changes.
procedure SaveToFile(const FileName: string);

SaveToStream
Call this method to save the current information contained in the inspector’s collection to a
stream. This can be useful if your inspector is not tied to a datasource. By calling this method
and the LoadFromStream method, you can save and load the user’s runtime changes. See the
Delphi documentation on TStream for more information on stream manipulation.
procedure SaveToStream(s: TStream);

74 Chapter 5, InfoPower Component Reference , TwwInspectorItem

TwwInspectorItem
The following properties and methods are part of TwwInspectorItem, which you can use to
manipulate an individual inspector collection item during runtime. See also TCollectionItem
for other methods inherited from the base class TCollectionItem.

Each row in the data inspector is associated with a TwwCollectionItem. You can manipulate
the properties at runtime by dbl-clicking on the inspector at design time.

Added Properties

Alignment
The Alignment property sets the default alignment of the text in the data portion of the
TwwDataInspector.
Data Type: TAlignment

Caption
The CaptionColor property defines the label that appears in the first column of the data
inspector.
Data Type: String

CellHeight
Assign this property to change the height of an individual row in the grid. Defaults to 0,
which means it will use the data inspector’s DefaultRowHeight property.
Data Type: Integer

Checked (Runtime only)
This property returns the current state of an item whose checkbox is enabled (See the PickList
property). You can also assign this property to set or clear the checkbox.
Data Type: Boolean

CustomControl
Assign this property to attach a custom edit control to a data cell in the inspector. This custom
control is used when the cell receives focus. The custom control also handles the painting of
the inspector’s cell when it does not have focus if CustomControlAlwaysPaints is set to True.

InfoPower allows you to select a wider variety of controls to embed in the inspector. However
not all controls will behave well. The InfoPower TwwDBEdit, TwwCheckbox,
TwwRadioGroup, TwwDBSpinEdit, TwwDBComboBox, TwwDBDateTimePicker,
TwwDBLookupCombo, 1stClass edit controls , and the Delphi TDBImage are supported.
The TwwDBGrid and TwwDataInspector are not currently supported as custom controls.
Some 3rd party controls will behave well, but you will need to experiment to determine the
ones that do. A smaller subset of 3rd party controls will work when

Chapter 5 - InfoPower Component Reference, TwwInspectorItem 75

CustomControlAlwaysPaints is true, so you may wish to set CustomControlAlwaysPaints to
False before experimenting.

Customizing the custom control: If you have previously assigned the CustomControl
property, you can select this control from the inspector’s collection editor, by holding down the
ALT key before you click on the inspector item. After doing so, the object inspector will show
you the properties and events of the custom control.

Warning: You should not attach the same custom control to more than one row in the
inspector when CustomControlAlwaysPaints is set to True. Otherwise the painting of the cells
sharing the same custom control is not reliable. When CustomControlAlwaysPaints is set to
False, then you can share the same custom control with more than one row.
Data Type: TCustomEdit

CustomControlAlwaysPaints
Set this property to False if you wish for the inspector to paint the cell as simple text. When
this property is true, then the custom control paints the cell instead of the inspector. This
allows controls that display icons to appear in the inspector even when they do not have focus.
You may wish to set this property to false if you want the inspector to paint the cell instead of
the custom control. This allows you the ability to share a single custom control with more
than one row in the inspector. See also the CustomControl property.

Warning : If this value is True, then you should not share the same custom control with more
than one row. If you do, the painting of the cells sharing the same custom control may display
the wrong text.
Data Type: boolean

CustomControlHighlight
Default is False. When set to True a frame is drawn around the active customcontrol in a
multiple column TwwDataInspector control. This may be helpful when trying to indicate
which column/cell has the focus for example by drawing a frame around an embedded
TDBImage control.

DataField
Assign this property to bind the row to a field in the datasource specified by the DataSource
property.
Data Type: String

DataSource
This property specifies the datasource associated with the DataField property. This property
defaults to the inspector’s DataSource property. If you wish to attach the inspector item to
another datasource, then set this property.
Data Type: TDataSource

76 Chapter 5, InfoPower Component Reference , TwwInspectorItem

DisableDefaultEditor
Set to true to disable the default editor from being used in the row when it gets the focus. This
causes the control to display in the same background as the inspector even when it gets the
focus. This property is ignored if you have attached a custom edit control.
Data Type: boolean

DisplayText (Runtime)
Returns the display text for an item that is mapped using the PickList.MapList property. If the
item’s PickList.MapList is false, then this property is equivalent to the EditText property.
Data Type: String

Enabled
Set this property to false to disable the inspector item from being edited or receiving the focus
when it is tabbed to. In addition, the inspector will attempt to paint the cell using the system
disabled color.

EditText
The current value for the item. After the user edits the text in the cell, this property is updated.
If you are using a mapped picklist, then this item represents the stored value, not the displayed
value. See the DisplayText to retrieve the display text.
Data Type: String

Expanded
When true, the current item is expanded to show its children. This property only applies to
inspector items, which contain children items.
Data Type: Boolean

Field (Runtime)
Returns the TField associated with this row.
Data Type: TField

Items (Runtime)
Collection, containing inspector items that are the immediate children of this item.
Data Type: TwwInspectorCollection

Level (Runtime)
Returns the hierarchical level of this row. If this is a root item, then level returns 0.
Data Type: Integer

Options
Assign this property to change selected behavior of this inspector item.
Data Type: TwwInspectorItemOptions

Chapter 5 - InfoPower Component Reference, TwwInspectorItem 77

iioAutoDateTimePicker Set to False to prevent the automatic creation of a date time
editor when the inspector detects that the row is associated with
a date or time field.

iioAutoLookupCombo Set to True to have the data inspector automatically create a
lookupcombo control if this row is associated with a lookup
field.

ParentItem (Runtime)
This property returns a handle to the parent item. ParentItem is nil if this item has no parent.
Data Type: TwwInspectorItem

PickList
Use this property to define a custom combo list or checkbox for the row.
Data Type: TwwInspectorPickList

The sub-properties of PickList are detailed below.

AllowClearKey See the TwwDBComboBox | AllowClearKey property

ButtonStyle See the TwwDBComboBox | ButtonStyle property

DisplayAsCheckbox Set to True to display the item as a checkbox. The first two strings
in the items property are used as the checked and unchecked values.
To initialize the checkbox, set the item’s EditText property.

Items See the TwwDBComboBox | Style property

MapList See the TwwDBComboBox | Style property

ShowMatchText See the TwwDBComboBox | ShowMatchText property

Style See the TwwDBComboBox | Style property

Picture
Assign this property if you wish to use a picture mask when editing this inspector item. Please
reference chapter 4, Selecting a Picture Mask for details on this property.
Data Type: TwwDBPicture

ReadOnly
Set to True to disable editing for this row. When a row is readonly and it has children items,
the inspector will allow the right and left arrow keys to expand and collapse the item.
Data Type: Boolean

Resizeable
Set to True to allow the row to be resized at runtime
Data Type: Boolean

TabStop
Set to False to disable the row associated with this item as a tabstop

78 Chapter 5, InfoPower Component Reference , TwwInspectorItem

Data Type: Boolean

Tag
Integer field in which you can use for your own purposes.
Data Type: Integer

TagString
String field in which you can use for your own purposes.
Data Type: String

Visible
Set to False to disable the display of this item and its children.
Data Type: Boolean

WordWrap
When true, the text for the item supports wordwrapping.
Data Type: Boolean

Added Events

OnEditButtonClick
Write an OnEditButtonClick event handler to perform your own action when the end-user
clicks on a button when the PickList | ButtonStyle is set to cbsEllipsis or if it is set to
cbsCustom and the PickList | ButtonGlyph is assigned and the .

Sender: TwwDataInspector The TwwDataInspector associated with this event

Item: TwwInspectorItem TwwInspectorItem which fired this event.

OnItemChanged
Write an OnItemChanged event handler to perform your own action after the user has
modified the text for a row. This event performs the same function as the DataInspector’s
OnItemChanged, except this event is fired only when its related item is modified.

Sender: TwwDataInspector The TwwDataInspector associated with this event

ObjItem: TwwInspectorItem TwwInspectorItem which has been changed.

NewValue: string The new value of the row’s data

Added Methods
Some of the methods below refer to the parameters VisibleItemOnly and ExpandedOnly. These
parameters are defined below.

Chapter 5 - InfoPower Component Reference, TwwInspectorItem 79

VisibleItemsOnly If VisibleItemsOnly is False, then the method ignores the item’s visible
property. The default value is True, which indicates that only items
whose visible property are True are considered by the method.

ExpandedOnly If ExpandedOnly is True, then items that are not in an expanded branch
or part of a root node, are ignored. The default value is false, which
indicates that the method will include non-expanded nodes.

GetFirstChild
Call this method to retrieve this item’s first child item. If no child is found, then nil is
returned.
function GetFirstChild(
 VisibleItemsOnly: boolean = True;
 ExpandedOnly: boolean = False): TwwInspectorItem;

GetLastChild
Call this method to retrieve this item’s last child item. If no child is found, then nil is returned.
function GetLastChild(
 VisibleItemsOnly: boolean = True;
 ExpandedOnly: Boolean = False): TwwInspectorItem;

GetNext
Call this method to retrieve the inspector item immediately following this item. This method
will include child items as well as parent items. This method is useful for iterating through the
data inspector’s entire list of inspector items. See the GetNextSibling method to get the next
item in the same level.
function GetNext(
 VisibleItemsOnly: boolean = True;
 ExpandedOnly: Boolean = False): TwwInspectorItem;

Example: The following code iterates through all the inspector items and displays the caption
property for each one.

var
 item: TwwInspectorItem;
begin
 item:= wwdatainspector1.getfirstchild;
 while item<>nil do
 begin
 showmessage(item.caption);
 item:= item.getnext;
 end;
end

GetNextSibling
Call this method to retrieve this item’s next sibling.
function GetNextSibling(
 VisibleItemsOnly: boolean = True): TwwInspectorItem;

80 Chapter 5, InfoPower Component Reference , TwwInspectorItem

GetPrior
Call this method to retrieve the inspector item immediately above this item. This method will
include child items as well as parent items. See the GetPriorSibling method to get the prior
item in the same level.
function GetPrior(
 VisibleItemsOnly: boolean = True;
 ExpandedOnly: Boolean = False): TwwInspectorItem;

GetPriorSibling
Call this method to retrieve this item’s prior sibling.
function GetPriorSibling(
 VisibleItemsOnly: boolean = True): TwwInspectorItem;

Chapter 5 - InfoPower Component Reference, TwwDataSource 81

TwwDataSource

 Provided for backwards compatibility. InfoPower allows you to directly use the
TDataSource component instead, so this component is no longer necessary when using
InfoPower controls.

Ancestor
TDataSource

Required property assignments
Dataset.

Added events
None.

How To
InfoPower’s TwwDataSource component functions in the same manner as Delphi’s
TDataSource component. Please refer to your Delphi manuals for more information about this
component.

Tips
Since InfoPower’s TwwDataSource component is a direct descendent of Delphi’s TDataSource
component, you are provided with 100% backward compatibility. Thus, you can safely replace
your use of TDataSource with TwwDataSource at any time.

82 Chapter 5, InfoPower Component Reference , TwwDBComboBox

TwwDBComboBox

 InfoPower greatly expands the capabilities of a regular data aware combo-box. It has
the following advantages over Delphi’s TDBComboBox.

• InfoPower gives its combo-box the ability to remember the user’s
previously entered values. The next time the user’s program is executed,
these previously entered values are automatically filled into the
combobox’s dropdown list. You can also specify a separate MRU list so
that the most recently entered entries appear at the top of the list.

• Allows you to enter mapped storage and display values so that you can
display understandable text versions of stored codes in your table, instead
of displaying only the codes themselves where users have to remember
what they all mean. Alternatively you could use a TwwDBLookupCombo
to display one field from a LookupTable, and store a different field.
However the TwwDBLookupCombo approach requires greater complexity
as a LookupTable is required to fill the drop-down list. The
TwwDBComboBox’s drop-down list comes directly from a string list. Use
the TwoColumnDisplay property if you wish to display both the code and
display value in the drop-down list.

• The glyph in the combo is configurable through the control’s ButtonGlyph
and ButtonWidth properties.

• Supports the 'Quicken' style display of the matching value, by
simultaneously searching and displaying the matching text in the search
controls. Set the ShowMatchText property to True to achieve this effect.

• Use the AllowClearKey property to give your end-user’s a convenient way
of clearing the combo’s selection.

• Since InfoPower is derived from the InfoPower base editor class, you can
access the following additional properties which are not available in
Delphi’s TDBComboBox: AutoSelect, AutoSize, BorderStyle, CharCase,
MaxLength, and InfoPower’s Picture property.

Figure 5.1 - The TwwDBComboBox component.

Ancestor
TwwDBCustomEdit

 └─ TwwDBCustomCombo

 └─ TwwDBCustomComboBox

Chapter 5 - InfoPower Component Reference, TwwDBComboBox 83

Added properties:
This component has the properties of the TwwDBEdit, plus the following additional
properties:

AllowClearKey
When the ComboBox style is set to csDropDownList, the user is not able to clear their
selection. The AllowClearKey property when set to True, gives the user a convenient way to
clear the combos current selection simply by entering either the or <BACKSPACE>
character.
Data Type: Boolean

AutoDropDown
When True, the lookup list drops down automatically when a keystroke is entered. The default
value is False.
Data Type: Boolean

ButtonEffects
See the topic “Key properties for enabling custom button effects in the edit controls” in chapter
4 for information on this property.
Data Type: TwwButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when ButtonStyle is
set to cbsCustom.
Data Type: TBitmap

ButtonStyle
This property defines the icon used for this component. If the property ShowButton is False,
then this property is ignored.
Data Type: TwwComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

cbsDownArrow The bitmap is displayed
cbsEllipsis The bitmap is displayed
cbsCustom: The icon defined by the ButtonGlyph property.

ButtonWidth
This property defines the width of the icon for the control. You may wish to set this property if
your custom bitmap assigned to the ButtonGlyph property is larger than the default button
width This property defaults to 0, which indicates to the control to compute the button width
based on the system settings..
Data Type: Integer

84 Chapter 5, InfoPower Component Reference , TwwDBComboBox

Column1Width
Use the Column1Display property to set the number of pixels to occupy for column 1. This
property is ignored unless TwoColumnDisplay is true.
Data Type: Boolean

DisableDropDownList
Set this property to True to disable the drop-down list from appearing. You can then use the
OnDropDown event to perform your own action, or bring up your own custom dialog.
Data Type: Integer

DisableThemes

If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

DropDownCount
This property determines how many entries will appear in the drop-down list box.
Data Type: Integer

DropDownWidth
The DropDownWidth property determines how wide the drop-down list box is in pixels. The
default value is 0, which will automatically size the box based on the width of the control.
Data Type: Integer

DroppedDown
Run-time only. The DroppedDown property determines whether the drop-down list of the
combo box is open or closed. If DroppedDown is True, the drop-down list is visible. If
DroppedDown is False, the drop-down list is closed.
Data Type: Boolean

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.
Data Type: TwwEditFrame

HistoryList
This property contains information on managing the built-in history list. The
TwwDBComboBox control supports automatic management of a history list to reflect the end-
user’s previously entered values. This convenient feature can be managed in a number of
different ways.
To enable history lists, set the Enabled property. This will tell the combo to remember values
the user types into the control. These values are remembered until the program exits. If you
wish to have these values remembered the next time the user starts the program, then you will

Chapter 5 - InfoPower Component Reference, TwwDBComboBox 85

need to define the location of where the history list is stored. This is done by setting the
StorageType property in conjunction with setting the Section and FileName properties.

You can also enable a most-recently-used list that appears at the top of the combo control. To
enable this, you will need to have both the Enabled and MRUEnabled properties set to True.
Data Type: TwwHistoryList

Enabled Set to True to enable the combo’s history list
FileName Set this property to indicate the INI filename, or the registry location to

store the history list items.
MaxSize Set this property to limit the size that the history list can grow to. For

instance, if you wish for the control to remember only the 100 most
recent entries, then set this property to 100. This property defaults to –1,
which indicates that the history list does not limit its size.

MRUEnabled Set to True to enable the combo’s MRU (most-recently-used) list. When
enabled, the combo control will display the most recently selected values
at the top of the drop- down combo control. This property is ignored if
the History | Enabled property is set to false.

MRUMaxSize Set this property to specify the maximum number of entries to show in
the MRU section of the combo’s drop-down list.

Section If StorageType is set to stIniFile, then this property indicates the section
within the INI filename to store the history list. If StorageType is set to
stRegistry, then this property indicates the key within the registry path
to store the history list.

StorageType Set to stIniFile to store the history list to an IniFile. Set to stRegistry to
store them in your registry. You also need to set the FileName and
Section properties in order for the history list to be saved when your
program exits.

ItemHeight
The ItemHeight property is the height of an item in the combo box list in pixels when the
combo box's Style property is csOwnerDrawFixed. If the Style property is any other setting, the
value of ItemHeight is ignored.
Data Type: Integer

Items
The default property editor dialog box for the Items property was redefined in InfoPower to
allow you to enter either a single list of values used for both the Displayed and Stored Values,
or a two-column list of values for both Displayed and Stored Values. The dialog box is now
called Edit Combo List. The MapList property can be set via the Map Displayed Value to
Stored Value check box contained within the dialog box (see the MapList property described
above).

86 Chapter 5, InfoPower Component Reference , TwwDBComboBox

When the Map Displayed Value to Stored Value check box is checked (or the MapList
property is set to True), the dialog box contains two columns: Displayed Value and Stored
Value, where the Displayed Value is always shown on the display screen and the Stored Value
is always stored to the database table. When the check box is unchecked (or the MapList
property is set to False), the dialog box contains only a single list of strings which defines both
the Displayed Value and Stored Value that are to be used. See the How To section below for
details on using the Items property.
Data Type: TStrings

LimitEditRect
Set this property to true if you wish to force the combobox’s editing rectangle to not overlap
the icon in the control. The negative consequence of this being set to true is that the combobox
will no longer close the modal form on an escape, as the escape goes to the control instead.

MapList
This property defines whether or not the display values specified in the Items property are
mapped to a corresponding Stored Value assignment. When True, the Items property dialog
box will display two columns of information, a Displayed Value and a Stored Value. The
Displayed Value is always shown on the display screen and the Stored Value is always stored
to the table. When False, the single list of display values you enter is used for both display and
storage purposes. See the How To section below for details on using the MapList property.
Data Type: Boolean

ShowButton
When this property is False, the combo's bitmap button is not shown. The default value is
True.
Data Type: Boolean

ShowMatchText
When this property is True this combo will have Quicken Style incremental searching by
simultaneously searching and displaying the matching text in the search control. The default
value is False.
Data Type: Boolean

Sorted
The Sorted property indicates whether the items in a list box or combo box are arranged
alphabetically. To sort the items, set the Sorted value to True. If Sorted is False, the items are
unsorted. If you add or insert items when Sorted is True, InfoPower automatically places them
in alphabetical order. Defaults to False.
Data Type: Boolean

Style
This property determines the style of the ComboBox. The csDropDown Style creates a drop-
down list with an edit box in which the user can enter text. The csDropDownList Style creates

Chapter 5 - InfoPower Component Reference, TwwDBComboBox 87

a drop-down list with no attached edit box, so the user can't edit an item or type in a new item.
Please refer to the Delphi documentation for more information on details of TComboBox style
property.

Note: When the ShowMatchText property is False and Style is csDropDownList, InfoPower
now adheres to the Windows combobox search behavior where the entered character is used to
find a match starting with that one character. Set ShowMatchText to true if you desire
continous incremental serarching where all entered characters are used to search the list.

Data Type: TComboBoxStyle
Valid Values: Stdctrls.csSimple, Stdctrls.csDropDown, Stdctrls.csDropDownList,
Stdctrls.csOwnerDrawFixed, Stdctrls.csOwnerDrawVariable.

Example: When setting the Style, you may need to scope the value when you do the
assignment.

wwDBComboBox1.Style := Stdctrls.csDropDown;

TwoColumnDisplay
When TwoColumnDisplay is True, both the mapped and stored values are displayed in the
drop-down list. Use the Column1Display property to set the number of pixels to occupy for
column 1.
Data Type: Boolean

Value
When MapList is True, this property represents the hidden stored value. When MapList is
False, this property is equivalent to the text property. Setting this property will also update the
controls ItemIndex property.

Required property assignments
Items.

Added Events
This component has all the events of the TwwDBEdit, plus the following additional events.

OnAddHistoryItem
This event allows you to perform some custom action when an enduser has typed in a new
entry into the control and a new item is about to be saved to the history list when
HistoryList.enabled is true. Set Accept to False to prevent the item from being added to the
history list.

Parameter Description
Value: String New string that is about to be added to the History List.
Accept: Boolean Set to False if you wish to prevent this item from being added to the

History list.

88 Chapter 5, InfoPower Component Reference , TwwDBComboBox

OnCloseUp
The OnCloseUp event occurs when the user closes a combo box’s drop down list.

Sender : TwwDBComboBox The TwwDBComboBox that is being closed up.

Select : Boolean False, if the user closed the drop-down list with the
Escape key.

OnDrawItem
Please see the Delphi documentation for information on this event.

OnDropDown
The OnDropDown event occurs when the user opens (drops down) a combo box.

Added Methods

AddItem
Call this method to add an item from the drop-down list. If AddToHistory is true, then the
item is also added to the history list. Note: Do not use the form’s OnCreate event to add items
as the added items would be overwritten when the combo’s properties are streamed in. If you
wish to add items when your form is opened, then use the form’s OnShow event. Note: You
can also manipulate the Items property if you wish to manipulate the items as a string list.

procedure AddItem(Value: string; AddToHistory: boolean = False)

ApplyList
Call this method if you manipulate the Items property during program execution. This applies
any run-time changes made to the Items property by updating the combo’s drop-down list.

Procedure ApplyList;

ClearHistory
Call this method to clear the items in the history list. After calling this method, the user’s
history of entered items is gone.

Procedure ClearHistory;

DeleteItem
Call this method to remove an item matching the string Value from the drop-down list. If
DeleteFromHistory is true, then the item is also removed from the history list.

procedure DeleteItem(Value: string;
 DeleteFromHistory: boolean = False)

DroppedDown
Returns True if the list is currently dropped down.

Chapter 5 - InfoPower Component Reference, TwwDBComboBox 89

GetComboDisplay
Use this to retrieve the display text of a mapped list that correlates with a given stored value.

Function GetComboDisplay(Value: string): string;

GetComboValue
Use this to retrieve the stored value of a mapped list that correlates with the give display value.

Function GetComboValue(DisplayText: string): string;

90 Chapter 5, InfoPower Component Reference , TwwDBComboBox

How To

Use the Items property and Edit Combo List dialog box:

Figure 5.2 - Edit Combo List dialog box

Adding and removing entries from the Edit Combo List dialog box is easy. The first time this
dialog box is displayed, the first entry is blank so you can simply enter the necessary value(s).
When you want to add an entry in between two existing entries, position the highlight to the
entry just below where you want the new entry inserted and press the Insert key. This adds a
blank entry immediately above the currently highlighted entry. To remove the currently
selected entry, press the Ctrl+Delete keys.

Example: If your application involves the storage of payment type information, you can save
disk storage space by assigning a series of integer values, or other single character codes, to
each of the allowable payment types you accept. You would first set the MapList property to
True. Then, via the Edit Combo List dialog box (Items property editor), you would enter the
Displayed Value and Stored Value assignments to look something like the following:

 Displayed Value Stored Value
 MasterCard 1
 Visa 2
 American Express 3
 Check 4

Chapter 5 - InfoPower Component Reference, TwwDBComboBox 91

 Purchase Order 5

Both the Displayed Value and Stored Value assignments are string values, providing you with
the most flexible options possible, so you can enter any type of data (text, numbers, etc.) you
need into either column.

If you wanted to store the entire Displayed Value string in your table (i.e. “Visa” instead of
“2”), you would first set the MapList property to False and then, via the Edit Combo List
dialog box, you would enter the list of Displayed Value assignments shown above. This single
list will then be used for both display and storage purposes.

Change the Displayed and Stored Values of the Items property at runtime:
To change the Displayed and Stored Values programmatically at runtime, you must first
realize that the Items property value is merely a TStrings data type with tab character
delimiters between each Displayed Value and Stored Value entry. Thus, to define the above
example at runtime, you would use the following Object Pascal code, where the entry #9
specifies the tab character (extra white space was added simply to make the example easier to
read):

myComboBox.Items.Clear;
myComboBox.Items.Add('MasterCard' + #9 + '1');
myComboBox.Items.Add('Visa' + #9 + '2');
myComboBox.Items.Add('American Express' + #9 + '3');
myComboBox.Items.Add('Check' + #9 + '4');
myComboBox.Items.Add('Purchase Order' + #9 + '5');
myComboBox.ApplyList;

After changing the Items property, be sure to call the method ApplyList to have your changes
reflected in the component.

Displaying Two Columns
It is sometimes desirable to display the code along with the longer form of the string. For
example, one might wish to store a U.S. State abbreviation as a 2 Character field in the
database, but display the long state name to the enduser in the combo. When the combo is
dropped down it is possible to display both the state and the abbreviation in the drop down list.

To do this, use the Edit Combo List dialog box (Items property editor), set MapList to True,
and then enter the Displayed Value and Stored Value assignments like the following:

 Displayed Value Stored Value
 California CA
 Colorado CO
 Connecticut CT
 Deleware DE
 Florida FL
 Georgia GA

92 Chapter 5, InfoPower Component Reference , TwwDBComboBox

 Texas TX

Then close the dialog and set TwoColumnDisplay to True. For optimal display you may wish
to set the DropDownWidth property (i.e. 200) and the Column1Width property (i.e. 125) based
on your data.

Caution

When the Style property is set to csDropDown, this normally allows the end-user to
manually enter a value that is not listed in the drop down list box, via the edit box portion
of the component. However, when MapList is set to True and the csDropDown Style is
selected, the end-user may only select a value from the contents of the drop down list box,
which is similar to the behavior provided when the Style property is set to
csDropDownList.

Chapter 5 - InfoPower Component Reference, TwwDBComboDlg 93

TwwDBComboDlg

 TwwDBComboDlg is a visual interface component that looks and behaves similar to
a DBComboBox edit component, in that it allows the user to enter and edit data in the edit box
portion of the component. However, when the user clicks the component’s “...” button, instead
of the normal drop-down list being displayed, any program-controlled action you define in the
OnCustomDialog event can take place, such as displaying a custom dialog box of your own
design.

 Figure 5.3 - The
 TwwDBComboDlg
 component.

Ancestor
TwwDBCustomEdit

 └─ TwwDBCustomCombo

Added Properties
In addition to all the properties of the TwwDBEdit, this component also has the following
additional properties.

AutoEnableEdit
Set this property to False if you wish to prevent the control from automatic enabling the
dataset’s edit state when the icon is clicked.
Data Type: Boolean

ButtonEffects
See the topic “Key properties for enabling custom button effects in the edit controls” in chapter
4 for information on this property.
Data Type: TwwButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when ButtonStyle is
set to cbsCustom.
Data Type: TBitmap

ButtonStyle
This property defines the icon used for this component. If the property ShowButton is False,
then this property is ignored. The following are the possible values:

94 Chapter 5, InfoPower Component Reference , TwwDBComboDlg

cbsDownArrow The bitmap is displayed
cbsEllipsis The bitmap is displayed
cbsCustom The icon defined by the ButtonGlyph property.

Data Type: TwwComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

ButtonWidth
This property defines the width of the icon for the control. You may wish to set this property if
your custom bitmap assigned to the ButtonGlyph property is larger than the default button
width This property defaults to 0, which indicates to the control to compute the button width
based on the system settings..
Data Type: Integer

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.
Data Type: TwwEditFrame

LimitEditRect
Set this property to true if you wish to force the combobox’s editing rectangle to not overlap
the icon in the control. The negative consequence of this being set to true is that the combobox
will no longer close the form on an escape, as the escape goes to the control instead.

ShowButton
When this property is False, the combo's bitmap button is not shown. The default value is
True. When the icon is clicked the OnCustomDlg event is called.
Data Type: Boolean

Style
When Style is set to csDropDown, the end-user can directly edit the control. If Style is set to
csDropDownList the user cannot edit by typing into the control.
Data Type: TwwDBLookupComboStyle
Valid Values: Wwdblook.csDropDown, Wwdblook.csDropDownList

Example: When setting the Style property for wwDBComboDlg, wwDBLookupCombo,
wwDBLookupComboDlg, or the wwDBLookupCombo you may need to scope the value when
you do the assignment.

wwDBComboDlg1.Style := Wwdblook.csDropDown;

Required property assignments
Custom code in the OnCustomDlg event.

Chapter 5 - InfoPower Component Reference, TwwDBComboDlg 95

Added Events
In addition to all the events of the TwwDBEdit, this component also has the following
additional event.

OnCustomDlg
This event is a modified version of the OnDropDown event and is executed when the user
clicks the “...” button of the component.

Example: The following example demonstrates how the TwwDBComboDlg component can be
used, assuming the TwwDBComboDlg component is named UserResponse. Add the following
code to the OnCustomDlg event:

if MessageDlg('Click Yes or No', mtConfirmation, [mbYes, mbNo], 0) = mrYes
then
 UserResponse.Text := 'Yes'
else
 UserResponse.Text := 'No';

When the user clicks the “...” button, Delphi’s Confirm message dialog is displayed with the
message “Click Yes or No”, as shown in Figure 5.4.

 Figure 5.4 - A simple Delphi Confirm message dialog box.

If the user clicks the Yes button, the text of the TwwDBComboDlg component is set to “Yes”.
Otherwise, the text is set to “No”. You can display a custom dialog box instead of a message
dialog box by replacing the call to MessageDlg with your own dialog box call. The actual
syntax you use depends on the value(s) returned by your dialog box.

96 Chapter 5, InfoPower Component Reference , TwwDBDateTimePicker

TwwDBDateTimePicker

 InfoPower’s TwwDBDateTimePicker is the ideal component for entering and
selecting a date or a time value.

Figure 5.5 – TwwDBDateTimePicker control

InfoPower's version includes the following functionality.
• When used against a date, it has a built in drop-down calendar for selecting a date.
• Embed within InfoPower's Grid and RecordView components
• Use with or without a database.
• Smart data entry: auto-advances when enough characters have been entered, and auto-fills

the date and time when the space key is entered.
• Display the date in the format of your choice using a format mask. Also supports

International date-time formats
• Spins up/down with the arrow keys and preserves the display format during spinning.
• Numerous display options for controlling the look of the drop-down calendar, such as

display of week numbers, display of current date, automatic circling of the current date, and
support for event based determination of which dates should be in bold.

• Year 2000 compliance
• Support for simultaneous entry of both date and time in the same control
• Support for custom framing, transparency, and custom glyphs

Ancestor
TCustomEdit

 └─ TwwCustomDateTimePicker

Required supporting components
None

Chapter 5 - InfoPower Component Reference, TwwDBDateTimePicker 97

Added Properties

ButtonEffects
See the topic “Key properties for enabling custom button effects in the edit controls” in chapter
4 for information on this property.
Data Type: TwwButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when ButtonStyle is
set to cbsCustom.
Data Type: TBitmap

ButtonStyle
This property defines the icon used for this component. If the property ShowButton is False,
then this property is ignored. The following are the possible values:

cbsDownArrow The bitmap is displayed
cbsEllipsis The bitmap is displayed
cbsCustom The icon defined by the ButtonGlyph property.

Data Type: TwwComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

ButtonWidth
This property defines the width of the icon for the control. You may wish to set this property if
your custom bitmap assigned to the ButtonGlyph property is larger than the default button
width This property defaults to 0, which indicates to the control to compute the button width
based on the system settings..
Data Type: Integer

CalendarAttributes
This property defines the attributes of the pop-up month calendar. See the
TwwDBMonthCalendar for further information on the following properties.

Alignment This property determines the how the drop-down calendar is
aligned with the date time picker. This property defaults to
wwdtaLeft, which means that the drop-down calendar is aligned
with the left-hand border of the date time picker.

 Valid Values: wwdtaLeft, wwdtaRight, wwdtaCenter

Colors See the TwwDBMonthCalendar’s CalColors property.

FirstDayOfWeek See the TwwDBMonthCalendar’s FirstDayOfWeek property.

Font Determines the default font used by the drop-down calendar.

Options See the TwwDBMonthCalendar’s Options property.

PopupYearOptions See the TwwDBMonthCalendar’s PopupYearOptions property.

98 Chapter 5, InfoPower Component Reference , TwwDBDateTimePicker

DataField
This property defines the name of the field you want to bind the DateTimePicker to. The
default value is blank (unbound).
Data Type: String (FieldName)

DataSource
This property defines the name of the TDataSource you want to bind the DateTimePicker to.
The default value is blank (unbound).
Data Type: TDataSource

Date
This property defines the date the DateTimePicker initially displays. This property is ignored
if the component is bound to a database field, as the date will then originate from the value of
the database field.
Data Type: TDateTime

DateFormat
This property defines whether the data is displayed using the system short date format, or the
system long date format. If the DisplayFormat is assigned, then this property is ignored. If the
control is bound to a datafield with its TField.DisplayFormat property assigned, then this
property is also ignored.
Data Type: TDTDateFormat
Valid Values: dfShort, dfLong

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

DisplayFormat
This property defines the format the control uses to both display and edit the date/time. See
Delphi’s TDateTimeField DisplayFormat property for details on specifying a display format.
Data Type: String
Valid Values: Blank or valid Delphi format string

Example: The following are some examples of setting this property
DisplayFormat Sample Displayed Text
mmmm dd, yyyy July 01,1998
hh:mm:ss AMPM 08:23:23 AM
mm/dd/yyyy 07/01/1998

Epoch
This property defines the epoch date to determine how 2 digit years resolve to 4 digit years.
This property defaults to the TwwIntl DefaultEpochYear property (1950), which will translate
2 digit years less than 50 to 20xx’, and years greater than 50 to 19xx.
Date Type: Integer

Chapter 5 - InfoPower Component Reference, TwwDBDateTimePicker 99

Valid Values: Valid year greater than 1900

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.

Interval.MinutesInterval
When the user enters the up/down arrows when the cursor is placed into the minutes, the
control adds or subtracts this amount of minutes from the current minute value.

Interval.RoundMinutes
If you wish for the minutes to round up/down to the nearest multiple of MinutesInterval, then
set RoundMinutes to true. For instance, if MinutesInterval is set to 5, and the current time is
1:03:00, then if you increment the minutes the resulting value will be 1:05:00 (rounded to a
multiple of 5).

MaxDate
This property defines the maximum allowable date that the date time picker will allow the
end-user to select. The default is blank means that the upper range of the date is not restricted.
Data Type: TDateTime

MinDate
This property defines the minimum allowable date that the date time picker will allow the end-
user to select. The default is blank which means that the lower range of the date is not
restricted. Note: The date time picker does not support dates less than the year 1900.
Data Type: TDateTime

ShowButton
Set this property to False, to hide the control’s drop-down button. The button is automatically
hidden if the control is only displaying/editing the time.
Data Type: Boolean

Time
This property defines the internal time that the month calendar stores. This is never displayed
to the end-user, but is used internally when updating a database field
Data Type: TDateTime

UnboundDataType
If the control is unbound, then this property determines the control’s data type. To edit an
unbound date time picker as a time, set this property to wwDTEdtTime. Similarly set this
property to wwDTEdtDate to edit the control as a date.

If the control is bound (datasource and datafield properties assigned), then the control
determines the field type from the TField information and this property is ignored

100 Chapter 5, InfoPower Component Reference , TwwDBDateTimePicker

Note: For more detailed control over the formatting, see the DisplayFormat property for this
control, as InfoPower will automatically edit and view based on this format.

Data Type: TwwDTEditDataType
Valid Values: wwDTEdtDateTime, wwDTEdtDate, wwDTEdtTime

Required property assignments
None

Added Events

OnCalcBoldDay
This event allows you to calculate which dates should be displayed in bold in the drop-down
calendar. This event is only called if CalendarAttributes |Options | mdoDayState is True. See
the TwwDBMonthCalendar’s Options property for detailed documentation on this event.

Chapter 5 - InfoPower Component Reference, TwwDBEdit 101

TwwDBEdit

 The TwwDBEdit component is an InfoPower enhanced data aware edit component.
Some of its enhancements include the following:

♦ InfoPower gives Delphi programmers the power to define a data entry
template, or mask, for the values that can be entered into a field displayed on
the screen. Please reference chapter 4, Selecting a Picture Mask for details on
using Picture Masks.

♦ Automatically detects date fields and allows the end-user to automatically fill
in the current date by entering the spacebar a few times.

♦ Full integration with InfoPower’s grid, which allows you to embed any
InfoPower edit control directly into the grid.

♦ Support for custom framing and transparency
♦ InfoPower adds new events for hot-tracking the mouse.

 Figure 5.6 -TwwDBEdit

 component

Ancestor
TCustomMaskEdit

 └─TwwCustomMaskEdit

 └─TwwDBCustomEdit

Required supporting components
None.

Inherited properties
The TwwDBEdit has the following standard Delphi properties:

AutoSelect, AutoSize, BorderStyle, CharCase, Color, Ctl3D, DataField, DataSource,
DragCursor, DragMode, Enabled, Font, MaxLength, ParentColor, ParentCtl3D,
ParentFont, ParentShowHint, PasswordChar, PopupMenu, ReadOnly, ShowHint,
TabOrder, TabStop, Visible.

See the Delphi documentation and help files for more information on these properties.

102 Chapter 5, InfoPower Component Reference , TwwDBEdit

Added properties

AutoFillDate
When True, the user can automatically fill in a TDateField with the current date by pressing
the spacebar a few times. The user’s cursor position must be at the end of the text for
AutoFillDate to work. This property is ignored when the database field is assigned a Delphi
edit mask or an InfoPower picture mask with AutoFill.
Data Type: Boolean

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.

Picture
Picture mask specification. Please reference chapter 4, Selecting a Picture Mask for details on
this property.

ShowVertScrollBar
When True, the control will display vertical scrollbars in the edit box. Use this with the
WordWrap property set to True.
When using this property, you may also wish to set the AutoSize property to False and resize
the control.
Data Type: Boolean

UnboundAlignment
When this component is used without a datasource and datafield, this property determines how
the component will align the text within the control when it does not have the focus.
Data Type: TAlignment

UnboundDataType
When this component is used without a datasource and datafield, this property determines how
the component will auto-fill when the space key is entered by the end-user. See the Delphi
documentation on date/time formatting to manipulate the format of the filled text.
AutoFillDate must be set to True in order for this property to be used.
Data Type: TwwEditDataType
Valid Values:

wwDefault No auto-filling of date or time
wwEdtDate Auto fill using current date
wwEdtTime Auto-fill using current time
wwEdtDateTime Auto-fill using current date and time

Chapter 5 - InfoPower Component Reference, TwwDBEdit 103

UsePictureMask
When True, picture masks are used by the InfoPower controls during editing.
When False, picture masks are not used during editing. In either case, True or False, picture
masks are still used to verify the validity of the fields in the record before the record is posted,
and when the user moves focus away from the component.
Data Type: Boolean

WantReturns
When True, the editor will accept carriage returns.
Data Type: Boolean

WordWrap
When True, the editor supports word wrapping. You will probably want to set AutoSize to
False when enabling this property.
Data Type: Boolean

Modified properties
None

Required property assignments
None

Added Events

OnCheckValue
This event allows you to perform some custom action based on any change to the edit
component’s text. For instance, you may want to put the edit control in yellow when it does
not satisfy the picture mask requirements. Please reference chapter 4, Selecting a Picture Mask
for details and examples on this event.

Note: This event is only fired if you have a picture mask defined for the field.

OnMouseEnter
Occurs when the mouse cursor passes from outside the control to inside the control. Use this
along with the OnMouseLeave event for hot-tracking effects.

OnMouseLeave
Occurs when the mouse cursor passes from inside the control to outside the control.

104 Chapter 5, InfoPower Component Reference , TwwDBEdit

Added Methods

UpdateRecord
This method flushes the currently edited value to the dataset record buffer. You may wish to
call this method if you wish for other controls that are tied to this field to immediately reflect
the new value. You usually will not need to explicitly call this method, since this method is
automatically called for you when the user exits the control.

Be aware that once you call this method the <Escape> key will no longer restore the original
contents of the field. You can still cancel the record’s changes be calling the table’s Cancel
method.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 105

TwwDBGrid

 The TwwDBGrid component is one of the most powerful components in the
InfoPower library, greatly expanding upon the capabilities of Delphi’s built-in TDBGrid
component.

Figure 5.7 - An example of the visual portion of an InfoPower TwwDBGrid
component in action.

What is new in InfoPower 4000
InfoPower has significantly enhanced its masterpiece grid with significant new functionality.
Some of the new features are described below.

Allow grouping of related data in grid
InfoPower 4000 allows you to group common data in the grid, by displaying only the text for
the first instance, as well as removing the lines in between. See the Company field below.

106 Chapter 5, InfoPower Component Reference , TwwDBGrid

Edit aggregate fields or detail information using drop-down panels
InfoPower’s superb grid can now display and edit aggregate or detail information from a drop-
down panel. Previously you were restricted to using a drop-down grid or drop-down inspector
from its clickable expand button. By allowing a panel, your grid’s capabilities and display
options are dramatically improved. See the how-to topics for details on this topic. See the
TwwExpandButton for information on embedding a drop-down panel in the grid.

Improved custom control integration and flexibility
Supports custom control (i.e. richedit) to grow larger when it has the focus. This allows for
increased display and editing conveniences.

1stClass buttons can now seamlessly be integrated into the InfoPower grid, giving your grid a
clickable component for each record. In addition the button colors can be dynamically
computed allowing the color to be different based on the record information.

Auto-sizing of column
Dbl-clicking the sizing line for a grid can automatically grow or shrink the column's width,
based on the widest displayed text in the column

Chapter 5 - InfoPower Component Reference, TwwDBGrid 107

Improved flexibility of custom painting
InfoPower 4000 adds new painting events : OnBeforeDrawCell and OnAfterDrawCell, and
new methods GetPriorRecordText and GetNextRecordText which you can access in these
events to allow you to have the painting logic be based on the next and previous record’s data.

Ditto Capability
Allow the user to conveniently copy the previous record’s value into the cell. See the
DittoAttributes property, and the OnDitto event.

In addition to the functionality of TDBGrid, InfoPower’s
TwwDBGrid provides you with:

Custom control integration and flexibility
InfoPower allows you to embed a wide variety of controls in the grid. You can even embed
non-InfoPower controls, such as the TDBImage. The grid also allows each custom control to
do their own painting in the grid so that even graphics, richedits, etc. will be displayed for
every row in the grid without any code on your part.

The data inspector can also be embedded in the grid, giving a multi-row record display. The
new checkbox and radiogroup controls can be embedded, which significantly improves the
versatility of the grid. When embedding non-text controls in the grid, you should set the
Control Always Paints checkbox in the Select Fields Dialog. This will allow the control to be
painted graphically, instead of as simple text.

True Master / Detail Relationships displayed from a single grid
InfoPower brings you a new paradigm to display and edit your master/detail relationships.
Detail tables can be initially hidden, and then expanded into full view when the end-user
expands a expand/collapse button in the parent grid. Each child-grid is fully customizable as
in the parent grid, and the control preserves the liveness of each expanded detail grid.

108 Chapter 5, InfoPower Component Reference , TwwDBGrid

To allow a grid to display an expand button for a detail grid, you must attach a
TwwExpandButton to the column in the grid. See the TwwExpandButton component for more
information. See also the how-to topic “How to embed a grid within the grid”.

You can also embed a drop-down inspector or TPanel with the expand button to further
increase the flexibility of the grid’s representation. See the TwwExpandButton for
information on embedding a drop-down panel within the grid.

Support for exporting from the grid to various formats.
InfoPower supports exporting to various formats to aid your end-users in extracting their
displayed data to be used with other applications. In addition you can copy the selected records
to the clipboard. See the following for an example of the generated html.

http://www.woll2woll.com/infopower/exportexample.html
See the ExportOptions property for more information on exporting data from the grid.

Background texture tiling
InfoPower allows your applications to further impress by adding support for background
texture tiling. The component takes care of blending your tile with the color of the grid region,
giving you a truly impressive and professional display. See the
TwwDataInspector.PaintOptions property for details on enabling the background texture
tiling.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 109

Expand/Collapse buttons for composite calculated fields

Use expand/collapse buttons to allow the user to edit a composite field. You can display a
calculated field such as full name (composed of first name + last name), and then the user can
expand the composite calculated field to edit the individual portions.

Grid header enhancements
The titles in the grid can be displayed and managed hierarchically. This allows you to group
related fields together. Also for header dragging operations, the grid more clearing indicates
the new placement of the column.

If you wish to enable grouped headers, you must uncheck the “Store Display Settings in
TFields” checkbox in the Select Fields Dialog . Then enter the group name for the field. Be
sure to consecutively couple the fields that should be grouped.

Flicker-free display
The grid improves both its painting performance and visual effect with its new flicker-free
display. The new flicker-free display is automatically enabled without any new property
settings.

Fixed column enhancements
InfoPower allows your end-users to edit and resize fixed columns. To enable this new
functionality, set the Options | dgFixedEditable and Options | dgFixedResizable to True.

110 Chapter 5, InfoPower Component Reference , TwwDBGrid

Clickable URL link support
Define columns as URL links (i.e. Email addresses). The grid will automatically handle its
display and the opening of the link. To enable URL-links for a column you will need to define
a column as a custom control (using the Select Fields Dialog). The format in the database is
<URL Display String>#<URL Link Address>. Alternatively you can omit the <URL Display
String># and the grid will display the raw address instead of the display string.

Native Alternating color
New property to automatically alternate the colors of the rows in the grid. This provides a
pleasing look to the end-user and helps differentiate one record from another. To enable
alternating colors, see the TwwDataInspector.PaintOptions property.

Proportional column sizing
The grid can now automatically size all the columns to fit perfectly in the grid’s client area. If
the grid is resized, all the columns still fit perfectly. Any trailing column space after the last
column is removed. To enable proportional column sizing, you must set the grid’s UseTFields
property to False and set Options | dgProportionalColResize to True.

End-user row sizing
User’s can enlarge the sizes of the rows by dragging the horizontal line in the indicator
column. To enable this capability, set the Options | dgRowResize. When resizing a row, all the
data rows in the grid will use the new size.

Line color customizations
You can override the default line colors by setting the LineColors property. See also the
LineStyle property.

Support editing with rowselect
Previously with rowselect, you could not edit within the grid. InfoPower adds a new option to
highlight the active row, and still allow editing. See the PaintOptions.ActiveRecordColor
property for more information.

InfoPower’s TwwDBGrid also provides you with the following abilities:
♦ Cell-level hints when the cell’s text does not fit in the cell : InfoPower

automatically displays the full text of a cell as a tool tip when the mouse is
moved over the cell. The tool tips also support memo fields and multiple
lines.

♦ Footer cell support - Developer can embed footer cells at the bottom of the
grid to display summaries of column information.

♦ Saving and loading of the user's runtime settings: The grid now can
automatically stream its current display settings to and from an INI file or the

Chapter 5 - InfoPower Component Reference, TwwDBGrid 111

system registry during program execution. This allows the end-user to
conveniently order and size the columns, and then save their settings for the
next time they run your application.

♦ DateTime picker support : Embed DateTimePicker controls directly in the
grid. InfoPower’s grid will even detect date or time fields and automatically
use the appropriate control.

♦ ImageList support : Display bitmaps from image lists in both the column
headers and the data cells.

♦ Embed a wider variety of powerful controls into the grid: Display a field
as a normal cell edit box, checkbox, combo box, spinedit, date time picker,
bitmap, lookup combo box, or your own custom edit box.

♦ Display the text of RTF fields in the grid, and also display a customizable
word processor window where your end-users can view and/or edit the
contents of the rich edit.

♦ Scaleable row heights : Scale cells to double or triple the height and word-
wrap text in resulting cells.

♦ Clickable column headers as each title caption in the grid can depress like a
button.

♦ Use InfoPower's powerful picture edit-masks when editing cells in the
grid.

♦ Embed a TSpeedButton into the Indicator column, allowing smooth
integration with the RecordView component.

♦ Calculated fields can now be edited in the grid. As a result you will be
able to edit calculated linked fields or lookup fields in a grid with only a few
lines of code.

♦ Display memo fields within the grid and also display a customizable pop-up
memo-editing window where your end-users can view and/or edit the
contents of a memo field, depending on how you set the properties.

♦ Complete control over how the titles are displayed: Set the alignment of
column headings to left, center or right justified. You can even separately
control each column's heading attributes (font color, background color,
alignment), as well as display multi-line headings, and icons from
ImageLists.

♦ Change the background color and font color displayed within individual
cells and entire rows.

♦ Define fixed, non-scrollable columns in the left-hand side of the grid.
♦ Built-in support for selecting multiple records: Select contiguous records

using shift-select, and auto-unselect the selected records when you just click
on a record.

112 Chapter 5, InfoPower Component Reference , TwwDBGrid

♦ Smart key mapping support if you want carriage returns automatically
converted to a tab.

♦ Can hide horizontal or vertical scrollbars.
♦ And much more!

Ancestor
TCustomGrid

 └─ TwwCustomDBGrid

Required supporting components
TDataSource.

Added properties

CalcCellCol
Runtime property used specifically by the OnCalcCellColors event. Reference this property
from the OnCalcCellColors event if you wish to have your cell painting logic be dependent
upon the column number being painted.

CalcCellRow
Runtime property used specifically by the OnCalcCellColors event. Reference this property
from the OnCalcCellColors event if you wish to have your cell painting logic be dependent
upon the row number being painted.

Example: The following code will paint the entire active row with the color, clHighlight.
Normally setting dgRowSelect to True can do this, but the side effect of dgRowSelect is that
you can no longer edit the row. The code below allows you to preserve the editing capabilities
but still paint the entire row.

procedure TBitmapForm.InvoiceGridCalcCellColors(
 Sender: TObject; Field: TField;
 State: TGridDrawState; highlight: Boolean;
 AFont: TFont; ABrush: TBrush);
begin
 with (Sender as TwwDBGrid) do
 if CalcCellRow = GetActiveRow then
 ABrush.Color:= clHighlight;
end;

ColWidthsPixels
Runtime property to allow precise pixel control of a column's width during runtime. The array
index is the column number you wish to manipulate or evaluate. Returns the width of a
column in pixels.
Data Type: Array of Integer values

Chapter 5 - InfoPower Component Reference, TwwDBGrid 113

ControlInfoInDataset
Set this property to False if you wish for the grid to store the information about the embedded
controls into the Grid. You may wish to set this property to False if you want the grid to have
no dependency upon the embedded control information stored in the dataset. By default this
property is False, which means that information about the grid’s embedded controls is stored
in the related TDataSet.

Note: Normally you will want to leave this property as True. Set this property to False if you
have more than one grid, attached to the same dataset, but on different forms

ControlType
This property is equivalent to the ControlType property (See TwwTable ControlType).
InfoPower stores the control information into this property if the ControlInfoInDataSet
property is False. Otherwise this property is not used.

DataSource
Lists only TDataSource components.

DisableThemes
Set this property to False to prevent themes from being used in the painting in the data area of
the grid.

DisableThemesInTitle
Set this property to False to prevent themes from painting in the title area of the grid. Themes
will still be used within the data portion of the grid (unless DisableThemes is False).

DittoAttributes
InfoPower supports a mechanism to allow the user to conveniently copy the previous or next
record with a single keystroke sequence.

DittoDirection
Set this property to determine if the ditto functionality should copy data from the next or
previous record.

wwDittoPrior – Copy previous record’s data when ditto shortcut is pressed. If the
active record is the top displayed record in the grid, then no action is performed.

wwDittoNext - Copy next record’s data when ditto shortcut is pressed. If the active
record is the bottom displayed record in the grid, then no action is performed.

wwDittoPriorOrNext – Copy prior record’s data when ditto shortcut is pressed. If the
active record is the top displayed record in the grid, then the next record is copied.

Data Type: TwwDittoDirection

ShortCutDittoField
Set this property to assign a shortcut key to copy a single field value of the dittoed record.

114 Chapter 5, InfoPower Component Reference , TwwDBGrid

Data Type: TShortCut

ShortCutDittoRecord
Set this property to assign a shortcut key to copy the field values of the dittoed record.
Assign the Options property if you wish to configure which fields are dittoed. Use the
OnDitto event if you wish to further customize which fields are copied.
Data Type: TShortCut

Options
This property customizes the ditto functionality. The following flags are available:
wwdoSkipBlobFields Set to true to disable the copying of blob fields
wwdoSkipReadOnlyFields Set to true to disable the copying of readonly fields
wwdoSkipHiddenFields Set to true to disable the copying of fields not visible in the

grid.

Data Type: TwwDittoOptions

DragVertOffset
InfoPower allows the user to drag a column to another position, and animates the header
column being dragged. This property determines the number of pixels to offset the dragged
header.
Data Type: Integer
Valid Values: Any Value greater than 0

EditCalculated
When set to true it allows you to edit a calculated or lookup field. As a result you will be able
to edit calculated linked fields or lookup fields in a grid with only a single line of code.
Tabstops will automatically be created on these columns. See example on how to edit linked
and lookupfields in the Grid.
Data Type: Boolean

EditControlOptions
This property defines specific settings for controls embedded in an InfoPower grid
Data Type: TSet()
Valid Values: ecoCheckboxSingleClick, ecoSearchOwnerForm (described below)

ecoCheckboxSingleClick When True, the end-user need only single-click a
checkbox cell in the grid to toggle it. When False, a dbl-
click is required.
ecoSearchOwnerForm When True, the grid searches
for embedded controls on the grid’s owner form. When
False, the grid will search the grid’s parent form. Usually
you will want to set this to True.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 115

ecoDisableCustomControls If True, then the grid will not use the assigned custom
controls during editing.

ecoDisableDateTimePicker If False, then the grid will disable the automatic creation
and use of the TwwDBDateTimePicker control to edit
dates or time fields.

EcoDisableEditorIfReadOnly If True, then the grid will disable the inplace editor if the
field is not editable.

ExportOptions
This property defines specific settings for exporting data from the grid to a series of different
file types or to the clipboard for other applications to use. Choose from HTML, formatted text,
tabbed delimited text, comma delimited text (this is a common spreadsheet format known as
.CSV), or the Excel SYLK (.SLK) format. Or by setting ExportOptions | Options |
esoClipboard to True, the data will be saved to the clipboard in the chosen ExportOptions |
ExportType format. If dgMultiSelect is enabled in the grid and an enduser has selected some
records, then you have the choice of exporting only the selected records or the current contents
of the filtered or nonfiltered dataset.
Data Type: TwwExportOptions, which consists of the following sub-properties.
Delimiter

Defaults to comma. Delimiter used to separate the fields from each other when the
ExportType is set to wwgetTxt. To export the data as tabbed text, set the Delimiter
property to #9 at runtime. To export in a CSV format, set the Delimiter property to ’,’. To
export records as formatted text (or spaced output), set the Delimiter property to ’’.
Data Type: String

ExportType
This property determines the actual format that the data is stored in. The default is
wwgetTxt, which means that the data will be saved in text only format with its fields
separated by the character defined by the Delimiter property.
Data Type: TwwGridExportType
Valid Values: wwgetTxt, wwgetHTML, wwgetSYLK, wwgetXML (described below)

wwgetTxt When ExportType is set to wwgetTxt, records will be saved to the
specified FileName in a Text Format, or if esoClipboard is in the
ExportOptions | Options property then the record data will be saved to
the clipboard in the CF_Text clipboard format. The delimiter settings
will determine the actual format of the exported text. See the Delimiter
property for more details.

wwgetHTML This format is one of the most flexible and powerful export formats.
Depending on the ExportOptions | Options settings, it is possible to
preserve the colors, fonts, group headings, column widths, footers, and
controls that are in the grid. Save to an HTML file and use an internet
browser to view the resulting table, or save to the clipboard and paste to
Microsoft Word or Excel.

116 Chapter 5, InfoPower Component Reference , TwwDBGrid

wwgetSYLK Microsoft Excel supports the spreadsheet format .SLK, which can retain
the current column widths and group headings, fonts that are set at the
time of export. Setting ExportOptions | ExportType to wwgetSYLK will
cause data to be saved in that format.

wwgetXML Not Implemented Yet. Provided for future XML exporting.

FileName
Defaults to blank, which indicates that the exported data will be saved in a .txt file, which
will get its name from the Applications executable name. You should set the filename’s
extension based on the ExportOptions | ExportType property setting.
For wwgetTxt, you may wish to set the extension of the filename to .TXT or .CSV. For
wwgetHTML, set the filename extension to .HTML. For wwgetSYLK, set the filename
extension name to .SLK. For wwgetXML, set the filename extension to .XML.
Data Type: String

HTMLBorderWidth

This property defaults to 1. This means that when the ExportOptions | ExportType
property is set to wwgetHTML, that the resulting table generated from the data will be
stored in an HTML table with a border width of 1.
Data Type: Integer

Options
This property defines the display of the resulting exported table.
Data Type: TSet()
Valid Values: esoShowHeader, esoShowFooter, esoDynamicColors, esoShowTitle,
esoDblQuoteFields, esoSaveSelectedOnly, esoAddControls, esoBestColFit,
esoShowRecordNo, esoEmbedURL, esoShowAlternating, esoTransparentGrid,
esoClipboard (described below)

esoShowHeader When True, the exported table will contain the grid’s titles.
esoShowFooter When True, if the grid is displaying footer cell information, then

the resulting exported table for certain export types will also display
the footer cell information.

esoDynamicColors When True, colors from the TwwDBGrid’s OnCalcCellColors
event will display in the resulting exported table. Currently only
wwgetHTML supports this.

esoShowTitle When True, the string defined by the TitleName property will be
exported as the Title of the exported file.

esoDblQuoteFields When True, fields will be quoted when exporting text using
wwgetTxt..

esoSaveSelectedOnly When True, only the multiselected records in the grid will be saved.
dgMultiSelect needs to be enabled in the grid.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 117

esoAddControls When the ExportType is set to wwgetHTML, then controls will be
created in the generated HTML Table. As this can create a lot of
controls, you should use this property with caution.

esoBestColFit When True, the exported table will try to find the best fit for the
columns based on the data in the resulting table. This currently
only applies to tables exported to SYLK or HTML.

esoShowRecordNo When True, the rows in the resultant table will be numbered from 1
to record count.

esoEmbedURL When the ExportType is set to wwgetHTML, then URL field types
will be displayed as clickable URLs in the resultant HTML table.
This is a powerful feature.

esoShowAlternating When the ExportType is set to wwgetHTML, then the resultant table
will display every other row in the alternating color defined by the
Grid’s PaintOptions | AlternatingRowColor property.

esoTransparentGrid When the ExportType is set to wwgetHTML, then the resultant table
be displayed transparently.

esoClipboard When True, the exported data will be saved to the clipboard in the
format defined by the ExportType property and the Delimiter
setting. This is particularly useful with the powerful HTML format
for example, as you can use the Save method to save to the
clipboard and paste to Microsoft Word or Microsoft Excel.

OutputWidthinTwips
This property defaults to 0. This property applies to HTML exporting only. Set this
property to the desired HTML Table width in twips or inches (1440 Twips=1 Inch). A
value of zero will mean the columns of the resulting table are not proportionally sized to
achieve the desired table width setting based on OutputWidthinTwips.
Data Type: Integer

Note: If there are too many columns/fields being exported, then it may not be possible to
squeeze the table to this desired width.

TitleName
This property defines the TitleName of the resulting table/file.
Data Type: String

Example 1 (Saving to HTML File): The following example demonstrates how you would
save the grids data to an HTML File.

1. Set the Grid's Filename property to xxxxx.html. Where xxxxx is the name of the
HTML file you wish to generate.

2. Set the ExportOptions | ExportType to wwgetHTML

3. Call the Save method and the generated file will be created. If you wish to save
this to the clipboard so that you can paste the resulting HTML into Microsoft

118 Chapter 5, InfoPower Component Reference , TwwDBGrid

Word or Excel 2000, then set the ExportOptions | Options | esoClipboard to
True.

4. If you want to programmatically display this with the default browser. Add
shellapi to your form’s uses clause and call it like:
ShellExecute(Handle, 'OPEN', PChar(wwDBGrid1.exportoptions.Filename),
nil, nil, sw_shownormal);

Example 2 (Saving selected data to Excel using the clipboard): The following example
demonstrates how you would save selected data to Excel using the clipboard.

1. Set the ExportOptions | ExportType to wwgetSYLK You could optionally also
set it to wwgetTxt for exporting just the data, or wwgetHTML (for special
formatting, coloring, and for Excel 2000).

2. Set the ExportOptions | Options | esoClipboard to True. If you wish to export to
a file set this to False and set the filename to the format xxxxx.slk.

3. Call the save method.

4. Open Excel and then select Edit | Paste or Edit | Paste Special.

FixedCols
This property defines the number of columns, from the left-hand side of the grid (not including
the record indicator column), that should be non-scrollable. If you specify a number larger
than the number of columns actually visible in the grid, the value is defaulted to 0. The default
value of 0 defines the current record indicator column as non-scrolling.
Data Type: Integer
Valid Values: Zero to the positive number of columns that are displayed in the visible portion
of the grid.

FooterCellColor
This property defines the color of the cells in the footer. The default is clBtnFace.
Data Type: TColor

FooterColor
This property defines the footer background color. The default is clBtnFace.
Data Type: TColor

GroupFieldName
Assign this property so that the grid paints common data as a group. You must ensure that the
dataset is already sorted by the common data. The grid will automatically manage the
painting of the grid so that the horizontal lines between the common data are removed, as well
as the repeating data values are only shown the first time. See the griddatagroup.pas file
within the maindemo program for an example.
Data Type: String

Chapter 5 - InfoPower Component Reference, TwwDBGrid 119

FooterHeight
This property defines the height of the footer section in the grid. The default is 0, which
indicates to the grid to compute the height based on the grid’s row height. To enable the
display of the footer in the grid, set the Options | dgShowFooter to True.
Data Type: Integer

HideAllLines
Set this property to true to disable the other lines drawn in the grid that are not controlled by
Options | dgColLines and Options | dgRowLines.

ImageList
This property relates a TImageList to the grid’s data cells. This ImageList is used for any
column whose ControlType is set to ImageIndex (See Using the Select Fields Dialog Box |
Edit Control in chapter 4). See also the “How-to” section for this component under “Display
an image from an ImageList”.
Data Type: TImageList

IndicatorButton
This property creates a TSpeedButton on the upper left corner of the Grid. You can attach any
code to this button. It has all the events and properties of a normal TSpeedButton. Use this as
a convenient way for invoking the TwwRecordViewDialog.
Data Type: TSpeedButton

IndicatorColor (Obsolete property – replaced by IndicatorIconColor)
This property defines the color used to draw the record indicator graphic. The default value is
icBlack. (Note: Only black and yellow are allowed because each color requires three separate,
color-specific bitmaps.)
Data Type: Constant
Valid Values: icBlack or icYellow

IndicatorIconColor
This property defines the color used to draw the record indicator graphic. The default is
clBlack.
Data Type: TColor

IniAttributes
This property defines specific settings for saving and storing the column positions, sizes,
display names and readonly properties into a system .INI file or as a registry entry. When
IniAttributes.Enabled is True, the grid will automatically save the grid’s column information
when the grid is freed. It will also automatically load the grid’s column information from the
registry or .INI file when the grid’s window handle is created. If you would like to load and
save the grid’s settings with code, you can use the LoadFromIniFile and SaveToIniFile
methods.
Data Type: TwwIniAttributes, which consists of the following sub-properties.

120 Chapter 5, InfoPower Component Reference , TwwDBGrid

CheckNewFields
When set to true the grid will automatically include new fields added to the grid's selected
property). This property is useful when you add new fields to the grid and wish those new
fields to be automatically included into the grid's display. When this property is false, the
grid would use the exact setting stored in the INIFile and thus would not include any new
fields or registry.
Data Type: String

Delimiter
Delimiter used to separate the column/field information that is stored in the .ini file or
registry.
Data Type: String

Enabled
Defaults to False, which means that the column information is not automatically saved.
Set to True to save the column/field information into the registry or an .ini file.
Data Type: Boolean

FileName
Defaults to blank or to the value of the TwwIntl IniFileName setting when Connected is
true. When SaveToRegistry is False, then the settings are saved into an .ini file. Of
special note, unless you specify the full pathname for the .ini file name, then the file will
be placed in the Windows directory. A blank filename will result in an .ini file in the
Windows directory named after your application name. When specifying a full path, if
the directory does not exist then no settings will be saved or loaded.

When SaveToRegistry is set to True, then this property must include the registry path
with the key name. For example: Software\Company\UserSettings\MyApp will be store
the grid settings in the registry in
HKEY_CURRENT_USER\Software\Company\UserSettings\MyApp\SectionName.
Data Type: String

SaveToRegistry
When True and IniAttributes is Enabled, then the Grid's column/field information is
stored into the system registry. FileName must be set. Defaults to False, which means
that the information is stored in an .ini file.
Data Type: Boolean

SectionName
This property will default to blank. This means that the grid's column/field information
will be stored in the registry or .ini file in a section named FormName+GridName.
Data Type: String

Example 1 (Saving to Windows .ini File): The following example demonstrates how you
would save the column information into an .ini file in the user's windows directory.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 121

1. Set the Grid's IniAttributes.Enabled property to True.

2. If you wish the .ini file to have a different name then your application name, then
set FileName to the name of the .ini file that you wish to set. (For example:
MyProject.ini)

3. You can override the name of the section that the grid's column/field information
is stored in by setting the SectionName property. The default is blank which
means that a unique section name will be generated based on the name of your
form and the name of your grid.

Example 2 (Saving to the Windows Registry): The following example demonstrates
how you would save the column information into the user's windows registry for your
application.

1. Set the Grid's IniAttributes.Enabled property to True.

2. Set the Grid's IniAttributes.SaveToRegistry property to True.

3. Now, set the FileName to point to the Path where the grid's column/field
information should be stored in the registry. So for example if you wish to store
the information in
HKEY_CURRENT_USER\Software\YourCompanyName\InvoiceApp, then just
set the FileName to Software\YourCompanyName\InvoiceApp.

4. You can override the name of the section that the grid's column/field information
is stored in by setting the SectionName property. The default is blank which
means that a unique section name will be generated based on the name of your
form and the name of your grid.

InplaceEditor
Runtime only. InplaceEditor is the default editor used by the grid to edit a field’s value. You
may wish to reference this property if you need to access the currently edited value or
dynamically manipulate the editor. For instance, if you wish to change the color of the editor
when it has an invalid value. See the TwwDBGrid event OnCheckValue for an example of
doing this.
Data Type: TwwInplaceEdit

You can use the following properties of the inplaceeditor dynamically at runtime.
WordWrap Boolean
TColor Color
TFont Font
String Text
Integer SelStart
Integer SelLength

122 Chapter 5, InfoPower Component Reference , TwwDBGrid

Example: The following code will automatically exit the State field after the user has entered 2
characters.

Procedure TForm1.InvoiceGridKeyUp(Sender: TObject;
var Key: Word; Shift: TShiftState);
 Function isValidChar(key: word): boolean;
 begin
 result:= (key = VK_BACK) or (key=VK_SPACE) or
 (key=VK_DELETE) or
 ((key >= ord('0')) and (key<=VK_DIVIDE));
 end;
begin
 with (Sender as TwwDBGrid) do begin
 if (InplaceEditor<>Nil) and
 (GetActiveField.FieldName='State') then
 begin
 if not isValidChar(key) then exit;
 if (length(InplaceEditor.Text)>=2) then begin
 SelectedIndex:= SelectedIndex + 1;
 end
 end
 end;
end;

KeyOptions
This property defines specific settings for keyboard behavior within the grid.
Data Type: TSet()
Valid Values: dgEnterToTab, dgAllowDelete, dgAllowInsert

dgEnterToTab When True, the enter-key is automatically converted to a tab in the grid.
dgAllowDelete When True, the grid will attempt to delete the current record when the

end-user enters the CTL-DELETE.
dgAllowInsert When True, the grid will attempt to insert a new record when the end-

user enters the INSERT character.

LineColors
Use the LineColors property to override the color of the lines in the grid.

DataColor Set this property to override the color of the lines in the data cells
FixedColor Set this property to override the color of the lines in the fixed columns

or borders
HighlightColor Set this property to override the color of the highlight lines
ShadowColor Set this property to override the color of the highlight lines

LineStyle
Specify whether the row and column lines are painted in 3d or as a single line. If this property
is set to glsDynamic, then the cell is painted as a single line unless the background color is not
white.
Valid Values: glsSingle, gls3D, glsDynamic

Chapter 5 - InfoPower Component Reference, TwwDBGrid 123

LoadAllRTF
In general it is recommended to use an embedded TwwDBRichEdit control with Custom
Control Always Paints set to True. But, if you do not have a RichEdit control attached to that
field, then this property is used to determine what is loaded into the grid. With LoadAllRTF
set to False instead of loading the entire blob for each visible richedit field it will only load the
first 3 packets. With LoadAllRTF set to True it will load the entire blob and display the text of
the richedit.

MemoAttributes
This property contains a set of Boolean values that control the display of Memo data, as
described below. The defaults are mSizable and mWordWrap.
Data Type: TSet()
Valid Values: mSizable, mWordWrap, mGridShow, mViewOnly (described below)

mSizable When True, the end-user is allowed to resize the pop-up memo editor
window. When False, the pop-up editor is displayed as a dialog box. The
default value is True.

mWordWrap When True, word wrapping is automatic. When False, the entire display
scrolls horizontally as words are added. The default value is True.

mGridShow When True, the memo data is displayed in the grid. When False, memo
data is not displayed in the grid. The default value is False. (Warning:
Enabling this option dramatically slows down the grid display since
memo data must be retrieved from a file other than the table being
accessed.)

mViewOnly When True, the user may not edit the contents of the memo and only the
OK button is displayed. When False, the user may edit the memo data
and both OK and Cancel buttons are displayed. The default value is
False. (Note: If the grid or field ReadOnly property is set to True, this
property is automatically set to True.)

mDisableDialog When True, the pop-up memo dialog for memo fields is disabled

MultiSelectOptions
This property defines specific settings for multiselection behavior within the grid.
Data Type: TSet()
Valid Values: msoAutoUnselect, msoShiftSelect

msoAutoUnselect When True this property will unselect all records when a user clicks
on a different record without the Ctrl key being pressed. In addition
it will automatically select the current record.

 Note: When msoAutoUnselect is True (and an unselectall is
triggered), the OnMultiSelectRecord event will not be fired. Use
the OnMultiSelectAllRecords event to clear totals if you are
calculating totals in the OnMultiSelectRecord event.

124 Chapter 5, InfoPower Component Reference , TwwDBGrid

msoShiftSelect When set to True this property allows the ability to select multiple
contiguous records with the mouse while the shift key is pressed.

Options
Same as the TDBGrid with the following new options
Data Type: TSet()
New Valid Values: Wwdbigrd.dgMultiSelect, Wwdbigrd.dgWordWrap,
Wwdbigrd.dgPerfectRowFit

dgMultiSelect When True, the grid will automatically use CTL-Click to
select/deselect a record. This provides a convenient way to
perform multi-selection. Embedded controls will not appear
in the grid when this property is enabled, so turn this
property off if you wish to edit. If you also wish to enable
shift-select, see the MultiSelectOptions property

dgWordWrap Support word wrapping when displaying and editing text in
the grid. When setting this property to True, also increase
the RowHeightPercent property so your grid can display
more than one line for each row.

dgPerfectRowFit This property is only used during design time. When True,
the grid will automatically shrink the grid height so that
there is no blank space at the bottom. This property allows
you a convenient way to set the grid’s height so that the rows
fit perfectly in the grid frame during design time.

dgShowFooter When True, the grid will display a footer section at the
bottom of the grid. In order for footer cells to appear within
the footer, you need to assign a value to each footer cell using
the ColumnByName(FieldName).FooterValue property. See
also the grid’s OnUpdateFooter event.

MyGrid.ColumnByName('Balance Due').FooterValue:= ‘100.00’;

dgFooter3Dcells This property determines whether the footer cells have a
three-dimensional (3-D) or two-dimensional look.

dgNoLimitColSize Set this to True if you wish to allow a column to shrink to a
smaller size than its display label.

dgTrailingEllipsis Set this property to True to display trailing ellipsis in a data
cell if the text will not completely fit in the cell. This
property only has an effect when the cell is a single line.

dgShowCellHint Set this property to True to display the text of a cell as a tool-
tip when its entire contents are not in view. You may wish to
use the OnCreateHintWindow event to customize the size of
the tool-tip window.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 125

dgTabExitsOnLastCol Set this property to True to allow the Tab key to exit the grid
if the active column is the last column. Similarly if the active
column is the first column, then shift-tab will go to the
previous control. The Options.dgTabs must be true for this
property to function.

dgFixedResizable Set this property to True to allow fixed columns to be
resizable in the same way as non-fixed columns.

dgFixedEditable Set this property to True to allow fixed columns to be
editable.

dgProportionalColResize Set this property to true if you wish to automatically size all
the columns to fit perfectly in the grid’s client area. If the
grid is resized, all the columns still fit perfectly. Any trailing
column space after the last column is removed. (Note: To
enable proportional column sizing, the grid’s UseTFields
property must be False.)

dgRowResize Set this property to True to allow the end-user a way of
resizing the sizes of the data rows by dragging the horizontal
line in the indicator column. When resizing a row, all the
data rows in the grid will use the new size.

dgRowLinesDisableFixed Set this property to True to hide the row lines that normally
appear in the fixed column area when dgRowLines is set to
True.

dgColLinesDisableFixed Set this property to True to hide the column lines that
normally appear in the fixed column area when dgColLines
is set to True.

dgFixedProportionalResize When dgFixedProportionalResize is set to True, then this
property determines whether or not the fixed columns will be
resized along with the data columns when the grid is resized.

dgHideBottomDataLine Set to false to prevent the last data row from painting a line
underneath the data.

dgDblClickColSizing Set to True to support the auto-sizing of columns when the
title area is dbl-clicked. The column is sized so that it
completely fits the widest displayed field in that column.
Note: The column will not enlarge the column if the column
would occupy more than half the horizontal span of the grid.

Example:When setting the TwwDBGrid’s Options make sure that you scope the values.
You can initialize, add or subtract values from TwwDBGrid | Options in the following
way.
{The following initializes the Options at runtime}
wwDBGrid1.Options := [Wwdbigrd.dgEditing, Wwdbigrd.dgTabs,

126 Chapter 5, InfoPower Component Reference , TwwDBGrid

 Wwdbigrd.dgColLines, Wwdbigrd.dgRowLines,
 Wwdbigrd.dgWordWrap];

{The following line will add titles in the grid.}
wwDBGrid1.Options := wwDBGrid1.Options + [Wwdbigrd.dgTitles];

{The following line will remove titles from the grid.}
wwDBGrid1.Options := wwDBGrid1.Options - [Wwdbigrd.dgTitles];

PadColumnStyle
This property allows you to fine-tune the painting if there are not enough records or columns
to paint data in the entire client area of the grid.

pcsPadHeader The header title area is padded so that there is no whitespace on
the right-hand side of the header area.

pcsPadHeaderAndData Any whitespace on the right-hand side of the grid or at the
bottom of the grid is filled with the title color, or the title blended
bitmap.

pcsPlain Any whitespace remains visible on the grid.

Data Type: TwwPadColumnStyle

PaintOptions
See the TwwDataInspector PaintOptions property.

PictureMaskFromDataSet
This property is only relevant if your datasource is attached to a TwwTable, TwwQuery,
TwwQBE, or TwwClientDataset component, as it is always treated as false in other cases.

When customizing the picture masks through the select fields dialog (invoked by clicking on
the selected property at design time), the mask information is stored in the related dataset if
this property is True. Otherwise the mask information is stored as a property in the related
visual component. By storing the mask information in the dataset, you do not need to re-enter
the picture mask for other visual controls attached to this same database field.
Data Type: boolean

PictureMasks
The assigned picture mask information is stored in this property if PictureMaskFromDataset is
false. See the PictureMaskFromDataSet property.
Data Type: TStrings

RowHeightPercent
This property controls the size of each row in the grid. By default this property is set to 100%,
which uses the default height. You can scale the row heights proportionally by changing this
value. For instance using 200% will cause each row to be twice as large. This property will
often be used when you have enabled word-wrapping in the grid. See the Options property
(dgWordWrap). You may also want to increase your RowHeightPercent if you are displaying
a bitmap in the grid.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 127

Data Type: Integer
Valid Values: A positive integer value

Selected
Clicking the “...” button or double-clicking the grid component displays the Select Fields
dialog box. This dialog box allows you to select the fields you want displayed in the grid, their
titles, widths, control types and link information. (See Using the Select Fields Dialog Box at
the beginning of Chapter 4.) The default value is all fields selected, using the field name as it’s
title, displayed as a Field control for a width equal to the number of characters in the field or
the title, whichever is longer.
Data Type: TStrings
Valid Values: List of strings, with each entry being tab-delimited and containing the field
name, the field width, and the field title.

Note: See also the grid’s ColumnByName method if you wish to set a column’s ReadOnly,
DisplayLabel, DisplayWidth, and FooterValue properties during program execution.

Example: The following will clear the grid's selected property and add two fields, each with a
display width of 10.

with wwDBGrid1 do
begin
 Selected.Clear;
 Selected.Add('Buyer' + #9 + '10' + #9 + 'Buyer');
 Selected.Add('First Name' + #9 + '10' + #9 + 'First Name');
 ApplySelected;
end;

If UseTFields is set to True, modifying the Selected property does not update the grid until the
dataset is re-opened. As a result, one should normally use the Visible, Index, DisplayLabel,
and DisplayWidth properties of the TField to change the field attributes during program
execution. Below is an example.

with wwDBGrid1,wwDBGrid1.DataSource.DataSet do
begin
 DisableControls;
 FieldByName('Field1').DisplayLabel := 'NewDisplayLabel';
 FieldByName('Field1').DisplayWidth := 6;
 FieldByName('Field2').Visible := False;
 FieldByName('Field3').Index := 0;
 EnableControls;
end;

SelectedList
This runtime only property returns a list of currently selected records.
Data Type: TList of TBookmarks
Valid Values: Use the InfoPower supported methods: IsSelected, SelectRecord,
UnselectRecord, SelectAll, UnselectAll, and SortSelectedList

Example: How to delete all selected records of a TwwDBGrid from its related table.
procedure TForm1.DeleteButtonClick(Sender: TObject);
var i: integer;

128 Chapter 5, InfoPower Component Reference , TwwDBGrid

begin
 with wwdbgrid1, wwdbgrid1.datasource.dataset do begin
 DisableControls; {Disable controls to improve performance}
 for i:= 0 to SelectedList.Count-1 do begin
 GotoBookmark(SelectedList.items[i]);
 Freebookmark(SelectedList.items[i]);
 Delete; { Delete Record }
 end;
 SelectedList.clear; { Clear selected record list }
 { since they are all deleted }
 EnableControls; { Re-enable controls }
 end;
end;

See also the TwwDBGrid How-to section - Iterating through the list of selected records in a
multi-selection grid.

ShowHorzScrollBar
This property defines whether or not to display the horizontal scroll bar within the grid. The
default value is True, which displays the horizontal scroll bar. Set this property to False when
you do not want the horizontal scroll bar displayed.
Data Type: Boolean

ShowVertScrollBar
This property defines whether or not to display the vertical scroll bar within the grid. The
default value is True, which displays the vertical scroll bar. Set this property to False when you
do not want the vertical scroll bar displayed.
Data Type: Boolean

TitleAlignment
This property allows you to define how the text contained within each of the column headings
is to be aligned. The default value is taLeftJustify. See also the OnCalcTitleAttributes event if
you want to individually customize each column heading.
Data Type: Constant
Valid Values: taCenter, taLeftJustify or taRightJustify

TitleButtons
When this property is True, the column headings of each column in the grid will act as a
button. When the user clicks on one, it will depress and fire the OnTitleButtonClick event.
Data Type: Boolean
Example: This example uses the wwDBGrid's TitleButtonClick event to change the table's
selected index to that of the clicked on column and then set that column heading's color to
yellow. It sets the table's index with the IndexFieldName property.

procedure TForm1.wwDBGrid1TitleButtonClick(Sender: TObject;
 AFieldName: String);
begin
 wwTable1.IndexFieldName := AFieldName;
end;

procedure TForm1.wwDBGrid1CalcTitleAttributes(Sender: TObject;
 AFieldName: String; AFont: TFont; ABrush: TBrush;

Chapter 5 - InfoPower Component Reference, TwwDBGrid 129

 var ATitleAlignment: TAlignment);
begin
 if (UpperCase(AFieldName)=
 UpperCase(wwTable1.IndexFieldName)) then
 ABrush.Color := clYellow;
end;

TitleColor
This property allows you to define the background color applied to both the column and row
headings of the grid. The default value is clBtnFace.
Data Type: Constant
Valid Values: Valid Delphi color constant

TitleImageList
This property relates a TImageList to the grid’s title. This ImageList is used in conjunction
with the OnCalcTitleImage event. See the OnCalcTitleImage event for more information on
how this property is used.
Data Type: TImageList

TitleLines
This property allows you to define the number of text lines to be used in the column title area.
The default value is 1, which provides for a single column title line of text. To define a multi-
line title: double-click the grid component to display the Select Fields dialog box; in the
Selected Fields list box, select the field name you want to change the title of; modify the value
displayed in the Title edit box within the Currently Selected Field group. Use the "~" character
to separate lines within the title.

For example, a Title of "Customer~Account~Number" would require the TitleLines property to
be set at 3 and would display each of the three words Customer, Account and Number on
separate title lines at the top of the grid column.

Note: If the TitleLines property is set to a value less than the number of text lines you specify
by using the "~" character, this character is displayed in the title text as though it were part of
the title.

Data Type: Integer
Valid Values: A positive integer value

UseTFields
When the UseTFields property is set to true the Selected property’s display settings are stored
and retrieved from the dataset that the grid is attached to. When it is set to False the Selected
property’s display settings are stored with the grid. Defaults to True.
Data Type: Boolean

130 Chapter 5, InfoPower Component Reference , TwwDBGrid

Modified properties

FixedColor
Replaced by the expanded TitleColor property described in the Added properties section.

Required property assignments
DataSource.

Added Events

OnAfterDrawCell
This event is fired after the grid paints each cell. Use this event to perform any additional
painting for the cell. If you wish to disable certain aspects of the default drawing then use the
OnBeforeDrawCell event.

Sender: TObject The TwwDBGrid associated with this event

DrawCellInfo: TwwCustomDrawGridCellInfo

See the OnBeforeDrawCell event for a description of this
parameter.

OnBeforeDrawCell
This event is fired before the grid paints each individual cell. Use this event to disable certain
types of painting operations (i.e. line drawing) from taking place for the cell.

Sender: TObject The TwwDBGrid associated with this event

DrawCellInfo: TwwCustomDrawGridCellInfo

 Contains information about the cell to be painted, as well
as properties which you can set to disable certain aspects of
the cell painting. TwwCustomDrawGridCellInfo is a
record structure with the following definition.

Rect: TRect Rectangle of cell that is about to be painted

Field: TField Field associated with cell

State: TGridDrawState State of the cell being drawn

DataCol, DataRow: integer Column and Row of the cell (0 based where
the first field is 0, and the first displayed
data row is 0). DataCol is -1 if the cell is in
the indicator column, and DataRow is -1 if
the cell is in the title area.

DefaultDrawBackground: Boolean Set to False to disable the background
painting of the cell

Chapter 5 - InfoPower Component Reference, TwwDBGrid 131

DefaultDrawHorzTopLine: Boolean Set to False to disable the horizontal line
from being painted

DefaultDrawHorzBottomLine: Boolean Set to False to disable the bottom horizontal
line from being painted

DefaultDrawContents: Boolean Set to False to disable the painting of the
text within the cell

OnBeforePaint
This event fires before the grid starts painting each individual cell. Use this event to paint
your own background for the TwwDBGrid.

Write an OnBeforePaint event handler to paint a background image to the inspector. The
parameters for this event are as follows:

Sender: TObject The TwwDBGrid associated with this event

Example: The following example makes sure that the detail grid in a master/detail
relationship paints it’s background image the same color as the current active background for
the master record. This example is taken from our master/detail grid demo. The
CustomerGrid is the master Grid and the InvoiceGrid is the detail grid.

procedure TMasterDetailGridForm.InvoiceGridBeforePaint(Sender: TObject);
begin
 if CustomerGrid.IsActiveRowAlternatingColor then begin
 with TwwDBGrid(Sender) do
 Canvas.CopyRect(ClientRect,
 CustomerGrid.PaintOptions.AlternatingColorBitmap.Canvas,
 ClientRect);
 end
 else
 with TwwDBGrid(Sender) do
 Canvas.CopyRect(ClientRect,
 CustomerGrid.PaintOptions.OrigBitmap.Canvas, ClientRect);
end;

OnCalcCellColors
This event, which executes just prior to painting the field values within each grid cell, allows
you to change both the font and background colors of individual cells. Continuous color
support is available so that you can have unlimited colors in the Grid. Previously you were
restricted to just the basic Windows color palette.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Field : TField Field that is associated with the column about to be
drawn.

State : TGridDrawState State of the cell being drawn

Highlight : Boolean True if the cell is to be highlighted

132 Chapter 5, InfoPower Component Reference , TwwDBGrid

AFont : TFont Font to draw the text in the cell

ABrush : TBrush Brush to use for drawing the cell background.

The examples below demonstrate how to accomplish these color changes. (Note: The
parameters ABrush, AFont, highlight and State are all defined in the CalcCellColors header.)

Example 1. Changing the font and background color of individual grid cells. This example
uses a State field within a TwwDBGrid. If the value in the State field is “CO”, the font color is
changed to red and the background color is changed to yellow for the grid column ‘State’.

procedure TForm1.wwDBGrid1CalcCellColors(
Sender: TObject; Field: TField;
State: TGridDrawState; Highlight: Boolean;
AFont: TFont; ABrush: TBrush);
begin
 if (Field.FieldName = 'State') then begin
 if (Field.Text = 'CO') then begin
 AFont.Color := clRed;
 if (not Highlight) then ABrush.Color := clYellow;
 end;
 end;
end;

Example 2. Changing the font color of an entire grid row based on the value contained in an
individual cell within the same row. This example uses the BalanceDue field of a TwwTable
object named InvoiceTable within a TwwDBGrid. If the BalanceDue amount is greater than
zero, the font color of the entire row is changed to red...

if (InvoiceTableBalanceDue.Value > 0) then Afont.Color := clRed;

OnCalcTitleAttributes
This event which executes just prior to painting each title cell, allows you to change both the
font and background colors of each title header, as well as individually control the title
alignments.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

AFieldName : String Name of the field that is associated with the column title
about to be drawn.

AFont : TFont Font to draw the text in the title cell

ABrush : TBrush Brush to use for drawing the title cell background.

ATitleAlignment : TAlignment Alignment used to draw the title cell

Example: The following right justifies the column header for the field Total Invoice. All other
fields use the grid’s TitleAlignment property. The example also changes the background color
for this column header cell to clYellow.

TForm1.wwDBGrid1CalcTitleAttributes(Sender: TObject;

Chapter 5 - InfoPower Component Reference, TwwDBGrid 133

 AFieldName: String; AFont: TFont; ABrush: TBrush;
 var ATitleAlignment: TAlignment);
begin
 if (AFieldName = 'Total Invoice') then begin
 ATitleAlignment := taRightJustify;
 ABrush.Color := clYellow;
 end;
end;

OnCalcTitleImage
This event allows you to define the image that appears in the title cell at runtime. The
TitleImageList property must be assigned to an ImageList for this property to have any effect.

Sender : TObject TwwDBGrid that is associated with this event.

Field : TField Field that is associated with the cell about to be drawn.

TitleImageAttributes: TwwTitleImageAttributes
 Attributes of how the image should be drawn in the cell.

TwwTitleImageAttributes is a record containing the following:

ImageIndex: Integer Image index from TitleImageList to paint into the cell. Default is
–1, which indicates no image is painted into the cell.

Alignment: TAlignment How to align the image. The image alignment can be set to
taLeftJustify, taCenter, or taRightJustify. Default is
taRightJustify.

Margin: Integer Number of pixels between edge of cell and the image. Default is 3
pixels.

IsGroupHeader: boolean This value returns true if the cell being painted is the group
header, as opposed to a sub-header of the group. You may wish to
refer to this property if you wish to paint the group header cell
with a different image than its sub-headers.

Example The following example displays the 4th image (0 based) from the TitleImageList if the
cell being painted is the field that the grid is sorted by. The code below assumes that your grid
is attached to a TwwTable.

procedure TBtnGridForm.wwDBGrid1CalcTitleImage(
 Sender: TObject; Field: TField;
 var TitleImageAttributes: TwwTitleImageAttributes);
begin
 if Field=(Field.Dataset as TTable).indexFields[0] then
 TitleImageAttributes.imageIndex:= 4
 else
 TitleImageAttributes.imageIndex:= -1
end;

OnCellChanged
This event allows you to perform some custom action after the user moves to a new cell in the
grid. In many cases this event is more useful than the OnRowChanged, OnColEnter, and
OnColExit events, as it allows you to centralize all your custom code for cell movement into a

134 Chapter 5, InfoPower Component Reference , TwwDBGrid

single event. To determine information about the new cell being entered, you can use the
GetActiveField method.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Example: (Updating a TLabel component to contain the text value of the active cell): The
following example updates a label component (Label1), to show the active cell’s text.

procedure TForm1.wwDBGrid1CellChanged(Sender: TObject);
begin
 Label1.caption:= (Sender as TwwDBGrid).GetActiveField.Text;
end;

OnCheckValue
This event allows you to perform some custom action while the user is editing cells in the grid.
This event is only fired if you have a picture mask defined for the field. You can test the
parameter PassesPictureTest to see if the user’s entry passes the picture mask requirements.
Note: If you want to check fields with custom editors attached, then you will also need to
attach your code to the custom editor’s OnCheckValue event.

The parameters for this event are as follows.

Sender : TObject Editor within the TwwDBGrid that is being checked.
Sender is a TwwInplaceEdit component. See the
TwwDBGrid runtime property InplaceEditor for more
information on the TwwInplaceEdit type.

PassesPictureTest : Boolean True if edited text passes the picture mask constraints.

Example (Coloring of a TwwDBGrid cell during editing) : The following example will give
cells being edited with the default editor a yellow background whenever the edited text does
not satisfy the picture mask constraints. If you are also attaching your own custom editors
within the grid (i.e. TwwDBComboBox, TwwDBEdit), your code will be slightly different.
See the Picture Mask section for more information on this event.

procedure TForm1.wwDBGrid1CheckValue(Sender: TObject;
PassesPictureTest: Boolean);
begin
 with Sender as TwwInplaceEdit do begin
 if not PassesPictureTest then color:= clYellow
 else color:= clWhite
 end
end;

OnColumnMoved
OnColumnMoved occurs when the user moves a column using the mouse. Write an
OnColumnMoved event handler to take specific action just after a column in the grid has been
moved. To retrieve the field name given a column number, you can use the FieldName
method of the grid.

 The parameters for this event are as follows.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 135

Sender : TObject TwwDBGrid that is associated with this event.

FromIndex, ToIndex: integer The FromIndex parameter gives the position the column
previously occupied. The ToIndex parameter gives the
position the column now occupies.

OnColWidthChanged
This event occurs when the user resizes a column with the mouse. Write an
OnColWidthChanged event handler to take specific action just after a column in the grid has
been resized.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Column: integer Column being resized OnDrawDataCell

OnCreateDateTimePicker
Use this event to customize the properties of the default DateTimePicker control for DateTime
fields. The parameters are as follows:

Sender : TObject TwwDBGrid that is associated with this event.

ADateTimePicker: TwwDBCustomDateTimePicker

 TwwDBDateTimePicker control created for datetime
fields.

OnCreateHintWindow
Use this event to customize the painting of the hint window. This event is fired before the hint
window is actually displayed. The parameters are as follows:

Sender : TObject TwwDBGrid that is associated with this event.

HintWindow: TwwGridHintWindow

 Hint window that was created. You can refer to its
Canvas property to customize how the hint window is
painted.

AField: TField Field that the hint window is displaying information
about.

 R: TRect Rectangle coordinates of the hint window

var WordWrap: boolean Set WordWrap to True to cause the hint window to
wordwrap

var MaxWidth: integer Set MaxWidth to limit the width of the hint window

var MaxHeight: integer Set MaxHeight to limit the height of the hint window

136 Chapter 5, InfoPower Component Reference , TwwDBGrid

var DoDefault: boolean Set DoDefault to False if you wish to prevent the grid
from painting the hint window.

Example: The following code attached to this event makes the hint window’s background
Blue.

HintWindow.Canvas.Brush.color:= clBlue;

OnDitto
This event is fired for each field that is being copied during a ditto operation. See also the
DittoAttributes event.

Sender : TObject TwwDBGrid that is associated with this event.

DataSet: TDataSet DataSet associated with ditto operation

Field: TField Field associated with ditto operation

var DittoValue: String Assign this property to change the ditto value used to fill
the field

var AllowDitto: Boolean Assign to false to prevent this field from being copied
during the ditto operation

OnDrawDataCell
OnDrawDataCell occurs when the grid needs to paint a data cell.

Sender : TObject TwwDBGrid that is associated with this event.

Rect: TRect Boundaries, in pixels, of the data cell to be painted

Field: TField TField associated with the cell to be painted

State: TGridDrawState TGridDrawState defines the possible states of a cell
when drawing occurs. This property is a set containing
zero or more of the following : {gdSelected, gdFocused,
and gdFixed}.

gdSelected The cell in the grid is selected.

gdFocused The cell in the grid has input focus.

gdFixed The cell is in the fixed (nonscrolling) region of the grid.

OnDrawFooterCell
This event occurs just before a footer cell is to be painted. Write an event handler to change
the attributes of the footer cell. The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 137

Canvas: TCanvas Canvas used to paint the cell. Reference this property to
change the cell’s brush or font attributes.

FooterCellRect: TRect Boundaries, in pixels, of the footer cell to be painted

Field: TField TField associated with the footer cell to be painted

FooterText: string Text of the footer cell

DefaultDrawing: boolean Set this event to False to disable the default drawing of
the footer cell. This property defaults to True.

OnDrawGroupHeaderCell
This event occurs just before a cell in the header is painted. Write an event handler to change
the attributes of a cell in the header.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Canvas: TCanvas Canvas used to paint the cell. Reference this property to
change the cell’s brush or font attributes.

GroupHeaderName: String Name of GroupHeaderCell being painted.

Rect: TRect Boundaries, in pixels, of the group header cell to be
painted

Var DefaultDrawing: boolean Set this event to False to disable the default drawing of
the title cell. This property defaults to True.

OnDrawTitleCell
This event occurs just before a cell in the header is painted. Write an event handler to change
the attributes of a cell in the header.

The parameters for this event are as follows.

Sender : TObject TwwDBGrid that is associated with this event.

Canvas: TCanvas Canvas used to paint the cell. Reference this property to
change the cell’s brush or font attributes.

Field: TField TField associated with the title cell to be painted

Rect: TRect Boundaries, in pixels, of the title cell to be painted

Var DefaultDrawing: boolean Set this event to False to disable the default drawing of
the title cell. This property defaults to True.

138 Chapter 5, InfoPower Component Reference , TwwDBGrid

OnExportField
This event occurs when the ExportOptions | Save method is called. See ExportOptions for
more details. This event fires for each field of each record that is to be exported allowing you
to decide which fields that you wish your end-users to export to a file.

Grid : TwwDBGrid TwwDBGrid that is associated with this event.

Field: TField TField being updated

Var Accept: boolean Set this parameter to False to prevent this Field from
being exported. This property defaults to True.

OnFieldChanged
This event occurs after a cell is modified and its contents have been flushed to the TField
buffers. Use this to perform your own custom action after a field in the grid has been
modified.

Sender : TObject TwwDBGrid that is associated with this event.

Field: TField TField being updated

Warning: Be careful not to include any code in this event that could cause infinite recursion,
such as modifying a field value (which would trigger this event again).

OnLeftColChanged
This event occurs after the grid scrolls horizontally.

OnMemoClose
This event executes immediately after the memo dialog box is closed. The parameters for this
event are as follows.

Grid : TwwDBGrid TwwDBGrid from which the memo dialog is being opened.

Cancel : Boolean True when the user cancels the dialog without making
changes.

OnMemoOpen
This event executes just before the memo dialog box is opened. Reminder: you can access any
of the TwwMemoDialog properties to customize the dialog.

The parameters for this event are as follows.

Grid : TwwDBGrid TwwDBGrid component from which the memo dialog
is being opened.

MemoDialog : TwwMemoDialog TwwMemoDialog being opened.

Example 1: The following code changes the height and position of the memo dialog box:

Chapter 5 - InfoPower Component Reference, TwwDBGrid 139

procedure TForm1.wwDBGrid1MemoOpen(Grid: TwwDBGrid;
 MemoDialog: TwwMemoDialog);
begin
 MemoDialog.dlgLeft:= 1;
 MemoDialog.dlgHeight := 200;
end;

Example 2: The following steps will change the wwDBGrid’s memo dialog box’s background
color to red. The grid’s embedded TwwMemoDialog component is not created until runtime,
so it is necessary to assign the OnInitDialog event during program execution.

1. Create an OnInitDialog event for a memo dialog box that is embedded in a TwwDBGrid.
a) Drop a TwwMemoDialog Component on your form, and add the following line of

code to the OnInitDialog event of the TwwMemoDialog component:
 Procedure TForm1.wwMemoDialog1InitDialog(Dialog: TwwMemoDlg)

begin
 Dialog.Memo.Color := clRed;
end;

b) Delete the TwwMemoDialog Component from your form. The event and its
declaration will be left in your code.

2. Now, add code to the grid’s OnMemoOpen event that assigns the OnInitDialog event to
the code you created above.

Procedure TForm1.wwDBGrid1MemoOpen(Grid: TwwDBGrid;
 MemoDialog: TwwMemoDialog)
begin
 MemoDialog.OnInitDialog := wwMemoDialog1InitDialog;
end;

OnMouseDown
This event (TMouseEvent) executes when the user presses a mouse button. See Delphi’s
documentation for further details on using this event. The parameters for this event are as
follows.

Sender : TObject The TwwDBGrid that received the MouseDown event.

Button : TMouseButton Determines which mouse button the user pressed,
(mbRight, mbLeft, mbMiddle).

Shift : TShiftState Indicates which shift keys (Shift, Ctrl, or Alt) and mouse
buttons were down when the user pressed or released the
mouse button that generated the TMouseEvent.
TShiftState = set of (ssShift, ssAlt, ssCtrl, ssRight,
ssLeft, ssMiddle, ssDouble).

X and Y : Integer Screen pixel coordinates of the mouse pointer. You can
use InfoPower’s MouseCoord(x,y) method to further
determine which grid column (x) and row (y) were
clicked on.

Example: See the example under the FieldName property.

140 Chapter 5, InfoPower Component Reference , TwwDBGrid

OnMouseMove
This event (TMouseMoveEvent) executes when the user moves the mouse. See Delphi’s
documentation on the OnMouseMove event for further details on using a TMouseMoveEvent.

OnMouseUp
This event (TMouseEvent) executes when the user releases a previously pressed mouse button.
See the OnMouseDown event for details on using a TMouseEvent.

OnMultiSelectRecord
This event (TwwMultiSelectRecordEvent) executes before a single record is selected or
unselected in the TwwDBGrid. Use this event to perform some custom action based on a user
selecting a record. The parameters for this event are as follows.

Grid : TwwDBGrid The TwwDBGrid that is being used for multiselection.

Selecting : Boolean Indicates whether the user is selecting or unselecting a
record. True if the user is selecting.

Accept : Boolean Set this property to True if the Grid should accept the
selection/unselection that was made, otherwise it will
reject it. This property defaults to True.

Example: This example prevents the user from selecting more than 3 records.
TForm1.wwDBGrid1MultiSelectRecord(Grid: TwwDBGrid;
 Selecting: Boolean; var Accept: Boolean);
begin
 if (Selecting and (Grid.SelectedList.Count>=3)) then
 Accept := False;
end;

OnRowChanged
This event occurs after the user moves to a new row in the grid.

OnTitleButtonClick
The OnTitleButtonClick event occurs when the user clicks on one of the column headings in
the TwwDBGrid. The TitleButtons property must be true in order for this event to occur. See
also the TitleButtons property

OnTopRowChanged
This event executes when the grid scrolls to a different record, causing the top record in the
grid to point to a different record.

OnUpdateFooter
The TwwDBGrid provides the convenient event, OnUpdateFooter, to assist you in updating
the footer on certain pre-defined conditions. The OnUpdateFooter event is called when you

Chapter 5 - InfoPower Component Reference, TwwDBGrid 141

post or delete a record associated with the grid. If the grid is attached to a detail table, then
the event also is called when the user moves to a new master record. If you require other
situations where the footer should be updated, then you will need to invoke your code that
updates the footer there. The following code updates the footer whenever the user moves to a
new customer, and posts or deletes a record from the invoice table.

procedure TBitmapForm.InvoiceGridUpdateFooter(Sender: TObject);
begin
 InvoiceGrid.ColumnByName('Balance Due').FooterValue:=
 FloatToStrF(SumQuerySumOfBalanceDue.asFloat, ffCurrency, 10, 2);
end;

OnURLOpen
This event executes when the end-user clicks on a URL-Link field. Use this event to override
the default behavior and provide some other default action.

Added Methods

ApplySelected
This method refreshes the grid based on the selected property. Call this method if you
manipulate the selected property with your own code. See example under the TwwDBGrid
Selected property.

ColumnByName
This method allows you to retrieve and set certain column attributes during program
execution. You can customize the following column properties with this method: (ReadOnly,
DisplayLabel, DisplayWidth, and FooterValue, DisableSizing). Use DisableSizing to allow an
embedded control to be larger than the cell size when the embedded control receives focus.

Example 1: The following code updates the FooterValue for a column.
MyGrid.ColumnByName('Balance Due').FooterValue:= ‘100.00’;

Example 2: The following code sets the ‘Balance Due’ column to ReadOnly
MyGrid.ColumnByName('Balance Due').ReadOnly:= True;

Example 3: The following code changes the size of a richedit control embedded in a grid
during editing. This allows the edit control to occupy more screen real-estate during actual
editing within the control.

procedure TLargeGridEditForm.wwDBRichEdit1Enter(Sender: TObject);
begin
 with wwDBGrid1 do begin
 ColumnByName('RINTERESTS').DisableSizing:=True;
 wwDBRichEdit1.Width:= 200;
 wwDBRichEdit1.Height:= 40;
 end;
end;

142 Chapter 5, InfoPower Component Reference , TwwDBGrid

DittoField
This method to called for each field, before each ditto operation takes place. Subclass this
method if you wish to change the ditto behavior. You can call this method to force a ditto
operation to take place in the currently active grid field.

SelectedField: TField Field to be copied
Direction: TwwDittoDirection Defaults to wwDittoPrior. See

DittoAttributes.DittoDirection property

FlushChanges
This method flushes the InplaceEditor’s contents to the TField buffers. You may wish to call
this method if you are invoking the RecordViewDialog, so that any current editing will be
recognized by the record-view.

FieldName
This method returns the name of the field associated with a column.

Function FieldName(Column: integer): string;

GetActiveCol
This method returns the currently active column index of the TwwDBGrid.

 Function GetActiveCol: Integer;

GetActiveField
This method returns the currently active field in a TwwDBGrid. The function declaration is as
follows:

Function GetActiveField: TField;

GetActiveRow
This method returns the currently active column index of the TwwDBGrid.

Function GetActiveRow: Integer;

GetPriorRecordText
This method retrieves a field value from the previous record. The field retrieved is specified by
AFieldName, and the value is placed into AText. If the method is unable to retrieve a value, it
returns False.

function GetPriorRecordText(
AFieldname: string; var AText: string): boolean;

Chapter 5 - InfoPower Component Reference, TwwDBGrid 143

GetNextRecordText
This method retrieves a field value from the next record. The field retrieved is specified by
AFieldName, and the value is placed into AText. If the method is unable to retrieve a value, it
returns False.

function GetNextRecordText(
AFieldname: string; var AText: string): boolean;

InvalidateCurrentRow
Redraws the grid’s currently active row by invalidating every cell in the current row. This is
not the same as calling the table’s refresh method, which would refetch the data from the
physical table.

Procedure InvalidateCurrentRow;

IsSelected
This method tests if the active grid row is selected. Before a record can be selected, you need
to configure the grid for multi-selection by following the steps in the TwwDBGrid’s How To
section. The grid row you are testing must be currently displayed in the grid for this method to
be accurate. When using this method within the OnCalcCellColors event, it returns True when
the cell’s related record is selected.

Function isSelected: boolean;

Example: This example changes all selected rows so that their background color is clBlue.
procedure TGridDemo.wwDBGrid1CalcCellColors(Sender: TObject;
 Field: TField; State: TGridDrawState;
 highlight: Boolean; AFont: TFont; ABrush: TBrush);
begin
 if wwdbgrid1.isSelected then ABrush.Color:= clBlue;
end;

LoadFromIniFile
This method loads the grid column information from the registry or .INI file. It respects the
IniFile property settings. See also the SaveToIniFile method.

MouseCoord
This method converts the current screen coordinates of the mouse pointer to grid coordinates,
which are valuable when using the new mouse-based events described earlier. The function
declaration is as follows:

Function MouseCoord(X, Y: integer): TGridCoord;

TGridCoord is a record containing the column and row as follows:

TGridCoord = record
 X: LongInt; { column }
 Y: LongInt; { row }
end;

144 Chapter 5, InfoPower Component Reference , TwwDBGrid

Example: The following code displays the grid column number that the user clicked on:
procedure TGridDemo.wwDBGrid1MouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer);
 var coord: TGridCoord;
begin
 coord := wwDBGrid1.MouseCoord(x,y);
 MessageDlg('You have selected column ' + IntToStr(coord.x),
 mtInformation, [mbOK], 0);
end;

SaveToIniFile
This method saves the grid column information to the registry or .INI file. It respects the
IniFile property settings. See also the LoadFromIniFile method.

SelectAll
This method selects all the records in the current grid for multiselection. Turn the
TwwDBGrid’s Option | dgMultiSelect property to True when using this method.

Procedure SelectAll;

SelectRecord
This method adds the record relating to the current grid row to the list of currently selected
records.

Procedure SelectRecord;

SetActiveField
This method allows you to change the currently active field, or column, in your grid. The
function declaration is as follows:

Procedure SetActiveField(AFieldName: string);

AFieldName is the name of the table field you want to make active, or move to.

SetActiveRow
This method allows you to change the currently active visible row in your grid. The function
declaration is as follows:

Procedure SetActiveRow(val: integer);

SetControlType
This method allows you to modify the control type of a grid column while your program is
executing. If you wish for the whole grid to immediately repaint after you call this method,
then call the Invalidate method of the Grid. For instance this may be desired when you set a
column to a checkbox since every row would have a visible checkbox.

The function declaration is as follows:
procedure SetControlType(AFieldName: string;
 AComponentType: TwwFieldControlType; AParameters: String);

Chapter 5 - InfoPower Component Reference, TwwDBGrid 145

AFieldName is name of the field in the grid that is changing.

AComponentType is the type of component to give this grid column. It can be one of the
following (fctField, fctBitmap, fctCheckbox, fctCustom, fctRichEdit)

AParameters depends on the AComponentType parameter, as demonstrated below:

fctField: This parameter should always be blank, like the following:
wwDBGrid1.SetControlType('Last Name', fctField, '');

fctCheckbox: This parameter is a ‘;’ delimited string that contains two values. The first
value is used when the checkbox is checked, and the second value is used when the
checkbox is unchecked. The following code example demonstrates how to define the field
Buyer as a checkbox with the two possible values, Yes and No:

wwDBGrid1.SetControlType('Buyer', fctCheckBox, 'Yes;No');
wwDBGrid1.Invalidate;

fctImageIndex: This parameter is either set to ‘Shrink To Fit’, or “Original Size’. If it is
set to ‘Shrink To Fit’, then the image will shrink to fit the size of the cell it is being
painted in.

wwDBGrid1.SetControlType('ImageFld', fctImageIndex,'Original Size');

fctBitmap: This parameter is a ‘;’ delimited string that contains two values. The first
value is the type of scaling to be used when the bitmap is copied into the cell. The second
value is what kind of copy is performed when the bitmap is painted into the cell.

wwDBGrid1.SetControlType('MyBitmap',fctBitmap,
 'Original Size;Source Copy');
wwDBGrid1.Invalidate;

Valid values for the bitmap scaling are one of the following.

Original Size
Stretch To Fit
Fit Height
Fit Width

Valid values for the copy operation are one of the following
Source Copy
Source Paint
Source And
Source Invert
Source Erase
Not Source Copy
Not Source Erase
Merge Paint

For more information on the meaning of these values, see Chapter 4 on the Select Fields
Dialog.

fctCustom: This parameter is the name of a InfoPower supported edit control

146 Chapter 5, InfoPower Component Reference , TwwDBGrid

Example. The following code sets the TwwDBGrid's Zip column to use the lookup
component named wwDBLookupCombo1:
wwDBGrid1.SetControlType('Zip', fctCustom, 'wwDBLookupCombo1');

fctURLLink : There are no parameters for this control type

fctRichEdit: This parameter is the name of an InfoPower TwwDBRichEdit component.

Example. The following code sets the TwwDBGrid's RichEdit column to use the
TwwDBRichEdit component named wwDBRichEdit1:
wwDBGrid1.SetControlType('RichEdit', fctRichEdit, 'wwDBRichEdit1');

SetPictureAutoFill
Use this method if you want to change the Picture | AutoFill property of a field in a grid at
runtime.
procedure SetPictureAutoFill(FieldName: string; AutoFill: boolean);

SetPictureMask
Use this method if you want to change the picture mask of a field in a grid at runtime.
procedure SetPictureMask(String FieldName, String Mask);

SizeLastColumn
Use this method if you wish to programmatically size the last column to stretch across the
remaining whitespace to the right of the grid. You may wish to use the Grid’s Options |
dgProportionalColResize property instead.
procedure SizeLastColumn;

SortSelectedList
This method sorts the list of selected records in the current index order using quicksort.
Usually you will want to call SortSelectedList before accessing the SelectedList property.
procedure SortSelectedList;

UnselectAll
This method unselects all the records in the current grid for multiselection. Turn the
TwwDBGrid’s Option | dgMultiSelect property to True when using this method.
procedure UnselectAll;

UnselectRecord
This method removes the record relating to the current grid row from the list of currently
selected records.
procedure UnselectRecord;

Chapter 5 - InfoPower Component Reference, TwwDBGrid 147

How To

Display a footer section with column summary
information
To enable the grid to display a footer requires the following
two actions:

• Set the Options | dgShowFooter to True.

• Update the footer cell by using the grid’s
ColumnByName method (i.e. OnUpdateFooter event).

You will need to determine when the footer cell should be updated (what events should trigger
the updating of the footer, i.e. after you post a record). The TwwDBGrid provides the
convenient event, OnUpdateFooter, to assist you in updating the footer on certain pre-defined
conditions. The OnUpdateFooter event is called when you post or delete a record associated
with the grid. If the grid is attached to a detail table, then the event also is called when the
user moves to a new master record. If you require other situations where the footer should be
updated, then you will need to invoke your code that updates the footer there.

See the InfoPower demo form, GRDBITMP.PAS, for a complete example of displaying a
footer. This demo contains code and objects to reveal other aspects of InfoPower, so pay
particular attention to the steps outlined below to understand which particular code and objects
are associated with the footer.

This demo displays all the invoices for a given customer in the grid, and displays the sums of
the Balance Due and Total Invoice fields in the footer. The footer is updated whenever you
move to a new customer, post a record in the invoice table, or delete a record from the invoice
table. The following details the setup of this demo form with respect to displaying and
updating the footer.

1. The property Options | dgShowFooter of the InvoiceGrid is set to True.

2. The demo relies upon SQL to calculate the sums of the invoice information for a given
customer. The TwwQuery SumQuery has the following property assignments:
SQL: select sum(ip4inv."balance due"),
 sum(ip4inv."Total Invoice") from ip4inv
 where ip4inv."Customer No"=:CustNo

Params: CustNo declared as a Data Type of Integer.
DatabaseName: InfoDemo5

3. The grid has the following code attached to its OnUpdateFooter event.
procedure TBitmapForm.InvoiceGridUpdateFooter(Sender: TObject);
begin
 SumQuery.active:= False;
 SumQuery.ParamByName('CustNo').asInteger:=
 CustomerTable.FieldByName('Customer No').asInteger;
 SumQuery.active:= True;

 InvoiceGrid.ColumnByName('Balance Due').FooterValue:=

148 Chapter 5, InfoPower Component Reference , TwwDBGrid

 FloatToStrF(SumQuerySumOfBalanceDue.asFloat,
 ffCurrency, 10, 2);

 InvoiceGrid.ColumnByName('Total Invoice').FooterValue:=
 FloatToStrF(SumQuerySumOfTotalInvoice.asFloat,
 ffCurrency, 10, 2);
end;

Create True Expandable master/detail relationships in a single TwwDBGrid.
InfoPower brings you a new paradigm to display and edit your master/detail relationships.
Detail grids can be initially hidden, and then expanded into full view when the end-user
expands a expand/collapse button (TwwExpandButton) in the parent grid. Each child-grid is
fully customizable as in the parent grid, and the control preserves the liveness of each
expanded detail grid. See TwwExpandButton for an explanation on how to setup this
relationship with the InfoPower grids.

Summary and Expandable Fields in Grid using the TwwDataInspector.

Use expand/collapse buttons to allow the user to edit a composite field. You can display a
calculated field such as full name (composed of first name + last name), and then the user can
expand the composite calculated field to edit the individual portions. The advantages are
obvious. See and edit more fields in a natural way.

1. Creating the Summary Fields.

a) Drop a TTable on your form set the DatabaseName to InfoDemo5 and the
TableName to clients.dbf.

b) Double click on it to bring up the Field’s Editor. Then create a string calculated
fields called ShippingAddress.

c) Now in the Table’s OnCalcFields event do something like the following
procedure TGridExpandForm.Table1CalcFields(DataSet: TDataSet);
begin
 with dataset do begin
 {Set the Shipping Address Composite Field}
 fieldbyname('ShippingAddress').asstring:=
 fieldbyname('Address_1').asstring + ', ' +

Chapter 5 - InfoPower Component Reference, TwwDBGrid 149

 fieldbyname('City').asstring + ', ' +
 fieldbyname('State').asstring + ' ' +
 fieldbyname('Zip').asstring;
 end;
end;

2. Setting up the dropdown TwwDataInspector Control.

a) Drop a TwwDataInspector and assign the TwwDataInspector’s Datasource property
to the same as the TwwDBGrid’s that you are using.

b) Double Click and remove all fields except: ADDRESS_1,CITY,STATE,ZIP.

c) We recommend other customizations like setting Ctl3D to False (If you do not see
this in the object inspector, then right click on the object inspector and select View |
Legacy in order to see Legacy properties),using dotted line styles for the data and
caption cells, or hiding the caption column.

3. Attaching a dropdown expandable datainspector to the cell.

a) Drop a TwwExpandButton on your form and set the Grid property to the
TwwDataInspector used in step 2.

b) Double Click on the grid and select the field you wish to attach this to. In this case
it would be ShippingAddress. Then go to the Edit Control tab page, set Control
Type to CustomEdit and in the Control Name dropdown combo select the Expand
Button control.

Multiple Row Record Display
InfoPower’s TwwDataInspector can also
be embedded in the grid, giving a multi-
row record display.

1. Follow the steps in 2b in the How
To topic for “Summary and
Expandable Fields in Grid using
the TwwDataInspector” to setup a
datainspector.

2. Attach the control to the desired grid column by using the Select Fields Dialog | Edit
Control as defined in chapter 4 and then set the checkbox for Custom Control Always
Paints to True on the Edit Control tab page.

3. Set the RowHeightPercent of the Grid to be as tall as necessary. In the example above
set it to 410 if you are showing four fields. Embed other multi-line memos, richedits,
radiogroups, or dbimages for a powerful and space efficient way to edit and view your
data.

150 Chapter 5, InfoPower Component Reference , TwwDBGrid

Edit a grid’s field using a custom control (i.e. combo box, spin edit, lookup combo,
date time picker, etc.)
InfoPower’s grid allows you attach different types of edit controls to any of the grid’s columns.
There are two basic steps in attaching a control. They are as follows:

1. Create the control that you wish to attach to the grid, and define its properties so it
reflects the look and behavior you desire. Place this control on the same form as the
grid.

2. Attach the control to the desired grid column by using the Select Fields Dialog | Edit
Control as defined in chapter 4.

Edit a grid’s field using a lookup combo box and a lookup field.
When using a TwwDBLookupCombo or a TwwDBLookupComboDlg component within the
grid, you may desire to store a code value into the table and display a descriptive value from
the lookup table to the end-user. In order to ensure that the user does not see the code value,
you will need to do the following additional steps after creating your lookupcombo control.

1. Create a Delphi lookup field in the TDataSet associated with your grid, in order to
display the field you want from the lookup table. See the Delphi documentation for the
steps on creating a TDataSet lookup field.

2. Using the Select Fields Dialog as defined in chapter 4, perform the following.

a) Add the lookupfield to the list of the grid’s selected fields, and remove the field that
represents the hidden stored value.

b) Highlight the name of the lookup field, and then click the Edit Control tab within
the Currently Selected Field section of the dialog box.

c) Select “Custom Edit” as the Control Type and your TwwDBLookupCombo control
as the Control Name.

d) Click on the OK button of the Select Fields Dialog box.

Attaching an icon to the indicator button:
Attaching an icon to the indicator button can simply be done by clicking on the
IndicatorButton property in the object inspector for the grid, and then load your glyph just like
any TSpeedButton by using the Glyph property.

Edit a LookupField Field in the grid:
Editing a lookupfield can be accomplished with a single line of code. This is accomplished via
the following steps:

1. Follow the steps in the Delphi manuals on creating a lookupfield field for your
TwwTable or TwwQuery.

2. Change the grid’s EditCalculated property to True.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 151

3. Dbl-click the TwwTable or TwwQuery component to bring up the fields editor. Select
the lookupfield or linked field in the fields editor and go to the events tab page in the
Object Inspector. Now add the following line of code to the TField’s OnChange event.
procedure TForm1.wwTable1cityzipChange(Sender: TField);
begin
 (Sender.Dataset as TwwTable).SetLookupField(Sender);
end;

Calling the RecordViewDialog from the grid:
Drop a TwwRecordViewDialog component onto your form and hook up the datasource
property to the same datasource that the grid is using. Then from the object inspector, click
the grid’s IndicatorButton property to bring up the events and properties of the Indicator
button. Then add the following code to the IndicatorButton’s OnClick event.

procedure TForm1.wwDBGrid1IButtonClick(Sender: TObject);
begin
 wwRecordViewDialog1.Execute;
end;

Enabling a grid for multi-selection:
The TwwDBGrid can support 2 different types of ways for the end-user to multi-select.

1. If you wish for the end-user to be able to use the mouse, Ctrl-Click, Shift-Click, then set
the grid’s Options | dgMultiSelect to True, followed by updating the
MultiSelectAttributes to conform to behavior you desire.

2. If you wish to allow the user to select records using a checkbox, then follow these steps.

a) Dbl-click the grid’s related TDataSet component and define a new Boolean field
named “Selected”. Your field name must be named “Selected”.

b) Dbl-click the grid and add the “Selected” field to the grid’s list of selected fields.
c) Select the “Selected” field and then click on the Edit Control tab page, and change

its Control Type to CheckBox.
d) Your grid will display the Selected column as a checkbox, and will automatically

keep track of which records the user has selected.

Unselect all other records when choosing a new record for multiselection:
Set the MultiSelectOptions | msoAutoUnselect to True. Now when you click on a new
selection for multiselect without hitting the control key, all previous multiselections will be
unselected.

Iterating through the list of selected records in a multi-selection grid:
To iterate through the list of selected records, reference the SelectedList property. For
example the following code displays the Last Name field of all the selected records, one at a
time.

var i: integer;
begin
 with wwdbgrid1,wwdbgrid1.datasource.dataset do begin

152 Chapter 5, InfoPower Component Reference , TwwDBGrid

 DisableControls; {Disable controls to improve performance}
 for i:= 0 to SelectedList.Count-1 do begin
 GotoBookmark(SelectedList.items[i]);
 ShowMessage(FieldByName('Last Name').asString);
 end;
 EnableControls; { Re-enable controls }
 end;
end;

See also the property SelectedList for an example of deleting selected records.

Define the grid’s column title alignment, color and font attributes:
Set the TitleAlignment, TitleColor and TitleFont properties as discussed in the Added
properties section above. If you do not wish for all your title attributes to be the same, then
use the OnCalcTitleAttributes event to individually control each title.

Example: The following example changes the “Last Name” field title in a grid so that its
alignment is centered. Other field titles in the grid will use the alignment as defined by
the TitleAlignment property.
procedure TForm1.wwDBGrid1CalcTitleAttributes(Sender: TObject;
 AFieldName: String; AFont: TFont; ABrush: TBrush;
 var ATitleAlignment: TAlignment);
begin
 if FieldName='Last Name' then ATitleAlignment:= taCenter;
end;

Color alternating rows in the grid with different colors:
To color alternating rows in a grid use the PaintOptions.AlternatingRowColor property.

Word-wrap text in the grid:
Set the Options | WordWrap property to True, and then change the grid’s RowHeightPercent
so multiple lines will be displayed for each row.

Convert carriage return to tabs in the grid:
Set the KeyOptions | dgEnterToTab property to True

Disable keyboard shortcuts for inserting and deleting into the grid:
Set the KeyOptions | dgAllowDelete and KeyOptions | dgAllowInsert properties to False.

Define the number of fixed columns:
Set the FixedCols property to the number of columns, from the left-hand side of the grid (not
including the record indicator column), that you want to be “fixed in-place” or non-scrollable.

Define how memo fields are displayed:
Set the sub-properties of the MemoAttributes property. Refer to the Added properties section
above for details about these sub-properties.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 153

Define and display a related field from another table in the grid:
See the Delphi documentation on creating a lookup field

Updating other fields based on the contents of an embedded
TwwDBLookupCombo component:
Use the OnCloseUp event of the TwwDBLookupCombo component. Refer to the
TwwDBLookupCombo component description for details about using this event.

Displaying a TGraphic field as a Bitmap in the grid:
To display a Graphic field in your database you can attach a Delphi TDBImage as a custom
control of the column. In addition, you need to check the Control Always Paints checkbox so
that the image is painted in the grid for every row.

Alternatively, you can set the control type to a bitmap by following these steps:

Double-click the grid component to display InfoPower’s Select Fields dialog box. Make sure
the column/field you want to change is listed in the Selected Fields listbox. If the field is not in
the selected fields listbox, then click on the Add Fields button add the field.

1. In the Selected Fields listbox, highlight the name of the field you want to change by
clicking on it.

2. Click the Edit Control tab within the Currently Selected Field section of the dialog box
to display the field’s currently selected edit control.

3. Click the drop-down button of the Control Type field and click on Bitmap

4. Enter the Bitmap Scaling and Raster Operation you wish to use.

5. Click the OK button of the Select Fields dialog box.

This bitmap field will now display in the grid.

Display an image from an ImageList
Quite often you may want to use some type of icon or bitmap to give some visual clue about a
record to the user. However it would not be desirable if you had to add another field in your
table and store the bitmap for every record. InfoPower allows you to store these types of icons
or bitmaps in an ImageList, and display them in the grid. This is accomplished via the
following steps:

1. Drop a Delphi TImageList component into your form, and assign the grid’s ImageList
property to this component.

2. Dbl-click the TImageList to add the desired images to the ImageList. See the Delphi
documentation for details on this component.

3. Dbl-click the Grid and select the field that is to represent the index into the ImageList.
This field must be of type TIntegerField. (If no physical field represents the

154 Chapter 5, InfoPower Component Reference , TwwDBGrid

ImageIndex, then create a calculated TIntegerField in your dataset and use the
TDataSet’s OnCalcFields to assign it the desired index into the ImageList).

4. Click the Edit Control tab within the Currently Selected Field section of the dialog box
to display the field’s currently selected edit control.

5. Click the drop-down button of the Control Type field and click on ImageIndex.

6. Check the “Shrink To Fit” checkbox if you wish the image to shrink to fit into the
grid’s cell.

7. Click the OK button of the Select Fields dialog box.

The image from the ImageList will now display in the grid. If you are attached to a calculated
field, then the image will not appear until you execute the program.

Editing a memo field within the grid:
Editing a memo while in a grid cell can be accomplished via the following steps:

1. Drop a TwwDBEdit component on your form and change the WordWrap property to
True and the WantReturns to True. If your memo text is long, then you may also wish
to set the ShowVertScrollBar to True.

2. Changing the grid’s RowHeightPercent property to something like 200 or more percent.

3. Double-click the grid component to display InfoPower’s Select Fields dialog box. Make
sure the memo field you want is listed in the Selected Fields listbox. If the field is not in
the selected fields listbox, then click on the Add Fields button add the field.

4. In the Selected Fields listbox, highlight the name of the memo field.

5. Click the Edit Control tab within the Currently Selected Field section of the dialog box
to display the field’s currently selected edit control.

6. Click the drop-down button of the Control Type field and click on CustomEdit

7. Then click on the Control Name dropdown listbox and choose the wwdbedit1 control
that you wish to be bound to this field.

8. Click the OK button of the Select Fields dialog box.

Use multiple grids on one dataset each displaying different fields of one dataset:
This can be accomplished by setting the UseTFields property to false on each of the grids that
is attached to the same dataset. Then you can just double click on each grid and add the fields
that you want visible in each of the grids.

Detecting when you move to a new row or a new cell in the grid
Use the OnRowChanged or the OnCellChanged events of the grid.

Chapter 5 - InfoPower Component Reference, TwwDBGrid 155

Allow the user to dbl-click a column header to resize the column.
Set Options | dgDblClickColSizing to True

Tips
♦ When defining groups and subgroups in the titles of the TwwDBGrid, make

certain that the subgrouped fields are right next to each other and have the
same groupname.

♦ Many of the grid’s capabilities are not supported unless UseTFields is False.
We recommend that you set this property to false unless you absolutely want
TField changes to be immediately reflected in the grid.

♦ To modify the properties of individual fields displayed in a grid, such as
value alignment, use the Object Inspector. If the field does not appear in the
Object Inspector, first make sure it’s selected via Delphi’s Fields editor
window (double-click the TwwTable component and use the Add option as
necessary). By default Delphi selects all fields in a table for retrieval, but you
are not allowed to edit the attributes of individual fields unless they are
physically listed in the Fields editor window. To manually add all fields to
the listbox in the Fields window, click the Add button of the Fields editor,
make sure all fields are highlighted and then click the OK button. You will
now be able to select an individual field in the Object Inspector and modify
its properties.

♦ When creating InfoPower components that are embedded in a TwwDBGrid
component, resize the Combo component on your form to display only a
single character (shrink the component from the left-hand side). These very
small sized components are a visual reminder that the component is used in a
grid instead of on the form.

♦ When you are manipulating many TField properties your property
assignments will execute considerably faster if you call the related dataset's
DisableControls method prior to doing the property assignments. After
completing your property changes, don't forget to re-enable the controls
bound to the dataset by calling EnableControls.

For example:

with wwtable1 do
begin
 DisableControls; {Display screen updates for wwtable1}

 {Make all your changes here}
 FieldByName('Field1').DisplayLabel := 'Field Title 1';
 FieldByName('Field1').Index := 1;
 FieldByName('Field2').DisplayLabel := 'Field Title 2';
 FieldByName('Field2').Index := 2;
 FieldByName('Field3').DisplayLabel := 'Field Title 3';

156 Chapter 5, InfoPower Component Reference , TwwDBGrid

 FieldByName('Field3').Index := 3;

 EnableControls; {show changes}
end;

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 157

TwwDBLookupCombo

 The TwwDBLookupCombo visual interface component provides your end-users with
the ability to enter, edit or select a value for a field from a drop-down list of values that is
populated from a second lookup table.

 Figure 5.9 - The
 TwwDBLookupCombo
 component.

InfoPower gives you the most flexible component for selecting entries from a lookuptable.
Here is some of what this powerful component can do.

• New – LookupCombo as Navigating Tool
The LookupCombo can now be used as a navigating drop-down control, without requiring
code to initialize its display and synchronization. When the user moves to a new record, the
lookupcombo’s display automatically reflects the active table record. Set the Navigator
property to True to use the control a a navigator instead of a lookup and fill control.

• Quicken style incremental searching: All of InfoPower's lookup components support the
'Quicken' style display of the matching value, by simultaneously searching and displaying
the matching text in the search control

• Support for many dataset types: Fill a drop-down list with a table, query, QBE,
ClientDataSet, and even parameterized queries.

• End-user usability enhancements: Smart properties to auto-drop down the list upon a valid
keystroke as well as a convenient way of clearing the Lookup Combo's Text;

• Flexible control over the appearance of the drop-down list: Select any number of fields to
be displayed in the drop-down list along with defining their display width and optional
titles.

• Embed images in the drop-down list: Define a field in the drop-down list as an index into
an Image list, and the control will automatically display the images.

• Embed into InfoPower's Grid, Inspector, or RecordView components: The component
can be used in a TwwDBGrid component to replace any multiple-choice type of field in the
grid, giving your end-users sophisticated lookup and fill capabilities within the grid or
record-view components.

• Sorting flexibility: The values in the drop-down list can be sorted in the order of the first
field you select to be displayed, if it's a secondary index field, instead of being sorted in
primary key order.

• Use unbound or bound: The component does not have to be bound, or assigned, to a table's
field (DataField and DataSource properties) which gives you greater flexibility in using this
LookupCombo for general tasks where a source table is not involved.

158 Chapter 5, InfoPower Component Reference , TwwDBLookupCombo

• Supports Transparency and custom framing : The control can now be displayed
transparently when it does not have the focus. In addition you can customize the border and
of the control.

• Improved icon support: You can attach your own custom glyph to the control, and the
glyph can be displayed in a flat or transparent style.

The first field displayed in the Selected Fields list of the Select Fields dialog box is the field
displayed in the component and provides the end-user with incremental search capability. For
performance reasons, it is best that an index for this field exist in the LookupTable. (See the
How to section of this component for a description of overriding the default index.).

Set the LookupTable property to the dataset component that contains the list of lookup valus.

Set the LookupField property to the field being read-in from the lookup table .

Ancestor
TwwDBCustomLookupCombo

Added Properties

AllowClearKey
When the ComboBox style is set to csDropDownList, the user is not able to clear their
selection. The AllowClearKey property when set to True, gives the user a convenient way to
clear the combos current selection simply by entering either the or <BACKSPACE>
character.
Data Type: Boolean

AutoDropDown
When True, the lookup list drops down automatically when a keystroke is entered. The default
value is False.
Data Type: Boolean

ButtonEffects
See the topic “Key properties for enabling custom button effects in the edit controls” in chapter
4 for information on this property.
Data Type: TwwButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when ButtonStyle is
set to cbsCustom.
Data Type: TBitmap

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 159

ButtonStyle
This property defines the icon used for this component. If the property ShowButton is False,
then this property is ignored.
Data Type: TwwComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

cbsDownArrow The bitmap is displayed
cbsEllipsis The bitmap is displayed
cbsCustom The icon defined by the ButtonGlyph property.

ButtonWidth
This property defines the width of the icon for the control. You may wish to set this property if
your custom bitmap assigned to the ButtonGlyph property is larger than the default button
width This property defaults to 0, which indicates to the control to compute the button width
based on the system settings..
Data Type: Integer

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be theme-
enabled, then set this property to False.

DropDownAlignment
This property defines which edge of the component the drop-down list should be aligned with.
taLeftJustify draws the drop-down list aligned with the left edge of the component (grows to
the right). taRightJustify draws the drop-down list aligned with the right edge of the
component (grows to the left). The default is taLeftJustify.
Data Type: Constant
Valid Values: taLeftJustify, taRightJustify

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for information on
this property.
Data Type: TwwEditFrame

Grid (Runtime Only)
This property gives you control over drop-down list properties, such as color, font, etc, through
the new public property Grid.
Data Type: TwwPopupGrid

Example: To change the color of the drop-down list to be yellow you can place the following
code in the control's OnDropDown event.

wwDBLookupCombo1.Grid.color:= clYellow;

160 Chapter 5, InfoPower Component Reference , TwwDBLookupCombo

ImageList
See the TwwDBGrid ImageList property

LookupField
This property defines which fields of the lookup table are used when looking up the value in
the lookup table. It was modified to support multiple lookup fields when performing a lookup
against a multi-field index. Use semicolons to separate field names. For example, if your
lookup table index contains the two fields LastName and FirstName, the value of this property
would be “LastName;FirstName”.

InfoPower has the following limitations when specifying multiple fields with the LookupField
property:

• It supports up to 3 fields. If you require more than 3 lookup fields then
use the TwwLookupDialog component in conjunction with a
TwwDBComboDlg and execute this dialog in TwwDBComboDlg’s
OnCustomDialog event. (See TwwLookupDialog for more details.)

• Your lookup field names must exist in both the LookupTable and the
DataSource table.

LookupTable
This property defines the TDataSet component to be used for populating the grid. The default
value is blank.
Data Type: TDataSet
Valid Values: Valid TwwTable, TwwQuery, TwwQBE, TwwStoredProc, or
TwwClientDataSet component name

LookupValue
Internal stored value. This is the same as the displayed text if your LookupField and your first
selected field are the same. You may wish to explicitly set this property and the text if you are
initializing an unbound TwwDBLookupCombo.
Data Type: String

Navigator
Set the Navigator property to True to use the control as a navigator instead of a lookup and
fill control. When used as a navigator, the LookupCombo handles matches the display of the
control to reflect the current record that the lookuptable is pointing to. When the user drops
down the list and selects a record, it does not perform a lookup and fill operation, but
instead moves the lookuptable to the record that was selected. When the user moves to a new
record through another control (such a a navigator) the lookupcombo’s display automatically
reflects the active table record.

OrderByDisplay
When True, this property will automatically change the LookupTable’s IndexName so that the
displayed field is the first field of the index. By changing the index, the drop-down list can be

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 161

viewed in the order of the displayed field instead of some hidden field which may be useless to
the end-user. This property has no effect unless you are using a TwwTable component for
your lookup. The default for this property is True.
Data Type: Boolean

Picture
Picture mask specification. Please reference chapter 4, Selecting a Picture Mask for details on
this property.

SearchDelay
This property controls how many milliseconds to wait before beginning the search for the
user’s entered text. The purpose of this property is to reduce the number of searches that are
performed as the user enters characters. Setting this to a larger value may improve your
performance as fewer searches will need to be performed. Setting this to a smaller value will
cause the search to begin more quickly. This property defaults to 0, which tells the control to
determine the best delay. Currently 333 milliseconds is used by the control for the delay.
Data Type: Integer

SearchField
This is a runtime only property. When using a multi-field index or a dBASE expression index,
you can incrementally search on the 2nd or 3rd field (instead of the first) by setting this
property to the field you want to search. By default the first field will be searched. To set this
property, add code to the OnDropDown event that sets the table index, and then sets the
property SearchField for the TwwDBLookupCombo.

Note: This field is required for dBASE expression indexes, and must be set to one of the fields
that compose the expression index.

Data Type: String
Valid Values: Valid field name

Example: The following code sets the index to the dBASE expression index, and then
specifies which field in the expression index should be searched incrementally:

Procedure TForm1.wwDBComboBox1DropDown(Sender: TObject);
begin
 wwTable1.IndexName := 'MyExprIndex';
 wwLookupCombo1.SearchField := 'MySearchField';
end;

Selected
Clicking the “...” button or double-clicking the TwwDBLookupCombo component displays the
Select Fields dialog box. This dialog box allows you to select the fields you want displayed in
the drop-down list, the order in which they are listed, their titles, display widths, control types
and link information. (See Using the Select Fields Dialog Box at the beginning of Chapter 4.)
The default value is no fields selected.

162 Chapter 5, InfoPower Component Reference , TwwDBLookupCombo

Data Type: (Internal to InfoPower)

SeqSearchOptions
This property controls how the component incrementally searches the LookupTable when an
index is not available. When used against a TwwTable this property is ignored and the case
sensitivity of the index is instead used.
Data Type: TSet
Valid Values: ssoEnabled, ssoCaseSensitive

ssoEnabled When True, incremental searching is supported. Incremental searching
is done by a sequential search through the result set.

ssoCaseSensitive When True, incremental searching considers case sensitivity when

performing an incremental search. This property has no effect if
ssoEnabled is False.

ShowButton
When this property is False, the combo's bitmap button is not shown. The default value is
True.
Data Type: Boolean

ShowMatchText
When this property is True this combo will have Quicken Style incremental searching by
simultaneously searching and displaying the matching text in the search control. The default
value is False.
Data Type: Boolean

Text
Currently displayed text in the control
Data Type: String

UseTFields
When the UseTFields property is set to true the Selected properties Display settings
information will be stored and retrieved from the LookupTable dataset. When it is set to False
the Selected properties Display settings information is stored with the TwwDBLookupCombo.
The default is True.
Data Type: Boolean

Modified properties

DataField
Optional. Can be left blank in conjunction with a blank DataSource in order to create an un-
bound component.

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 163

DataSource
Optional. Can be left blank in conjunction with a blank DataField in order to create an un-
bound component.

LookupDisplay
Replaced by the Select Fields dialog box (double-click the component). The first selected field
becomes the field that the combo displays when it is not dropped down. All the selected fields
are displayed when the combo is dropped down.

LookupSource
Replaced by LookupTable.

Required property assignments
LookupField, LookupTable and Selected.

Added Events

OnCloseUp
Use this event to perform your own actions when the drop-down list closes (immediately after
the user makes a selection). This allows you to fill-in one or more related fields. For example,
if the TwwDBLookupCombo component is used to lookup a part number for an invoice, in this
event you could then acquire and fill-in other related data, such as the unit price, manufacturer
name and part description.

Parameters

Sender : TObject TwwDBLookupCombo that is being closed up

LookupTable : TDataSet DataSet being looked up

FillTable : TDataSet DataSet that is being filled with the lookup value.

Modified : Boolean True, if user has selected a value. False, if user has
entered <ESC>.

OnDropDown
Use this event to perform your own actions just before the drop-down list is displayed to the
end-user. For example, you could activate a table filter against the LookupTable to limit the
records displayed in the drop-down list.

Parameters

 Sender : TObject TwwDBLookupCombo that is being dropped down.

164 Chapter 5, InfoPower Component Reference , TwwDBLookupCombo

OnNotInList
Use this event if you wish to perform your own actions when the user types in a value that is
not in the lookup table list.

Parameters

Sender : TObject TwwDBLookupCombo that is being edited

LookupTable : TDataSet DataSet being looked up

NewValue : String Value that user has typed in which is not in the table list.

Accept : Boolean Set this variable to True to accept the entry, and False
otherwise.

Example: The following example adds a new record to the lookuptable. If more than one
field exists in your lookuptable, then you will need to provide a way for the end-user to
enter the additional field values. In this example there are two fields in the lookuptable,
zip and city. The user is typing in the city name. The new zip value needs to be assigned
by your own custom form or dialog.
procedure TLookupForm.wwDBLookupCombo1NotInList(Sender: TObject;
 LookupTable: TDataSet; NewValue: String; var Accept: Boolean);
begin
 { Your custom form could do the following instead of here }
 LookupTable.insert;
 LookupTable.FieldByName('City').asstring:= NewValue;
 LookupTable.FieldByName('Zip').asstring:= NewZipValue;
 LookupTable.Post;
 accept:= True;

 { Refresh combo }
 with (Sender as TwwDBLookupCombo) do
 begin
 DataSource.DataSet.FieldByName(DataField).asString:= NewZipValue;
 LookupValue:= NewZipValue
 end;
end;

OnPerformCustomSearch
When using a large lookuptable from a remote server, the performance of the lookupcombo’s
incremental searching can significantly degrade. To resolve this issue, InfoPower adds a new
event where you can control the specific action that takes place after the user types a character,
or when the control needs to look up a value. In particular the custom action can update the
query to only return the records that you are interested in. When using this event, your code is
responsible for manipulating the lookuptable based on the parameter values passed in.

Parameters

Sender : TObject TwwDBLookupCombo that is being edited

LookupTable : TDataSet DataSet being looked up

SearchField : String Field to search

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 165

SearchValue : String Value of field to be searched in the lookup table.

PerformLookup : Boolean If this value is true, then your code in the event should
search the lookup table for the specific value indicated
by SearchValue. If this value is false, then your code
should find a partial match with starting with the string
indicated by SearchValue.

Var Found : Boolean Set to true to indicate that a matching record was found.

Example: The following example uses the event to modify the sql in the lookup table, and
reactivates it to perform the custom search. Only 1 record is fetched from the remote
server when doing the lookup, and only records matching the entered text are returned
during the incremental searching. The lookup field in this example is ‘zip’.

procedure TCustomComboForm.wwDBLookupCombo1PerformCustomSearch(
 Sender: TObject;
 LookupTable: TDataSet; SearchField, SearchValue: String;
 PerformLookup: Boolean; var Found: Boolean);
const dbl = '"';
var q: TQuery;
begin
 q:= TQuery(LookupTable);
 q.active:= false;
 SearchValue:= AnsiUppercase(SearchValue);
 if PerformLookup then // Find exact match
 begin
 q.sql.clear;
 q.sql.add('Select * from ip4zip');
 q.sql.add('where ip4zip."zip" = ' + Dbl + SearchValue + Dbl);
 end
 else begin // Find partial match
 q.sql.clear;
 q.sql.add('Select * from ip4zip');
 q.sql.add('where ip4zip."zip" like ' + Dbl + SearchValue + '%' + Dbl);
 end;
 q.active:= true;
 found:= not q.eof;
end;

Added Methods

DropDown
Call this method to programmatically dropdown the list.

PerformSearch
Call this method to immediately perform an incremental search on the LookupTable with the
current text value. In cases where you apply a filter in your OnDropDown event, you need to
explicitly call PerformSearch if you are using AutoDropDown. The LookupCombo may have
already completed its search prior to the filter being applied.

166 Chapter 5, InfoPower Component Reference , TwwDBLookupCombo

RefreshDisplay
Call this method to refresh the lookupcombo’s display based on changes in the lookuptable’s
data.

How To
Update other fields based on the contents of a wwDBLookupCombo component:
Attach code to the OnCloseUp event that sets the text property of other fields on the form. For
example, you have an invoice line item entry form that is bound to a table named LineItem
that contains fields named PartNo, PartDesc, UnitCost and Qty. Your LookupTable name is
Parts, contains fields named PartNo, PartDesc and UnitCost, and has a DataField property
value of PartNo. The user has already entered a Qty value and has just selected the PartNo
from the Parts table’s lookup combo drop-down list (PartNo is not set because the
LookupCombo is defined to fill that field)...

if modified then begin {only execute when PartNo is changed}
 LineItem.fieldByName('PartDesc').text :=
 Parts.fieldByName('PartDesc').text;
 LineItem.fieldByName('UnitCost').text :=
 Parts.fieldByName('UnitCost').text;
end;

Override the default LookupTable index:
Add the following line of code to the OnDropDown event to change the default active index
(first field listed in the Selected Fields list box) used in the LookupTable to ‘iLast’:

with (Sender as TwwDBLookupCombo) do
 (LookupTable as TTable).IndexName := 'iLast';

Fill the drop-down list from a Query or QBE result.
The following example queries the IP4ZIP table, and retrieves all distinct states to fill into a
TwwDBLookupCombo’s list. The table used by the TwwQuery in this example is IP4ZIP.DB
and is located in the InfoDemo5 DatabaseName alias.

1. Add a new TwwQuery component to your form and set the following properties:

DatabaseName = InfoDemo5
Name = CustomerQuery
SQL = Select Distinct State from IP4ZIP
Active = True

2. Add a new TwwDBLookupCombo component to your form and set the following

properties

LookupTable = CustomerQuery
LookupField = State

Chapter 5 - InfoPower Component Reference, TwwDBLookupCombo 167

3. Save your project, run the program and click on the drop-down icon for your
LookupCombo. If all went well, you should see one entry for each state in the zip code
table.

Tips
♦ Remember to select the fields you want displayed in the drop-down list by

double-clicking the TwwDBLookupCombo component or by clicking the “...”
button in the Selected property.

♦ To display column titles, lines or row lines in the drop-down list, define the
sub-options within the Options property.

♦ If you have two TwwDBLookupCombo components on the same form that
access the same physical lookup table, they must use two different TwwTable
components. This is necessary in order to keep the component’s use of the
table indexes from conflicting with each other.

♦ You can press the Alt+down keyboard keys when the component has focus to
activate the drop-down display.

168 Chapter 5, InfoPower Component Reference , TwwDBLookupComboDlg

TwwDBLookupComboDlg

 Similar in functionality to the TwwDBLookupCombo component, InfoPower’s
TwwDBLookupComboDlg component provides the services of the TwwDBLookupCombo
component in a dialog box. This component provides your end-users with the ability to enter,
edit or select a value for a field from a list of values that is populated from a second lookup
table. When the user clicks the “...” button on the visual component, the value selection list is
displayed via a grid embedded in a dialog box, instead of in the usual drop-down list.

The dialog box contains a developer-controlled grid along with a search criteria edit box and
an optional table index selection combo box. You can enable up to two optional developer-
controlled buttons in this dialog box and define what actions take place when the user clicks
on either button.

The TwwDBLookupComboDlg provides all the properties, events, and methods of the
TwwDBLookupCombo with the exception of DropDownAlignment, DropDownCount and
DropDownWidth. It additionally provides for the properties, events, and methods defined in
the following pages.

 Figure 5.10 - The
 TwwDBLookupComboDlg component.

 Figure 5.11 - An example dialog box portion
 of the TwwDBLookupComboDlg component.

Chapter 5 - InfoPower Component Reference, TwwDBLookupComboDlg 169

Ancestor
TwwDBCustomLookupCombo

Required supporting components
TDataSource

Added Properties

AllowClearKey
When the ComboBox style is set to csDropDownList, the user is not able to clear their
selection. The AllowClearKey property when set to True, gives the user a convenient way to
clear the combos current selection simply by entering either the or <BACKSPACE>
character.
Data Type: Boolean

AutoDropDown
When True, the lookup list drops down automatically when a keystroke is entered. The default
value is False.
Data Type: Boolean

ButtonEffects, ButtonGlyph, ButtonStyle, ButtonWidth
See the TwwDBLookupCombo for a description of these properties.

Caption
This property contains a text value that is displayed in the editor window’s title bar. The
default value is “Lookup”.
Data Type: String

DataField
Optional. Can be left blank in conjunction with a blank DataSource in order to create an un-
bound component.

DataSource
Optional. Can be left blank in conjunction with a blank DataField in order to create an un-
bound component.

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for
information on this property.

GridColor
This property defines the background color of the grid. The default value is clWhite. (When
the first column of a grid is fixed, its colors are the same colors used for the grid’s column
titles as defined in the TitleColor property.)

170 Chapter 5, InfoPower Component Reference , TwwDBLookupComboDlg

Data Type: TColor

GridOptions
This property contains a set of standard Delphi grid options.
Data Type: TSet()
Valid Values: Valid Delphi grid options

GridTitleAlignment
Determines the text alignment of titles in popup-dialog's grid. The default value is
taLeftJustify.
Valid Values: taCenter, taLeftJustify or taRightJustify

LookupField
See TwwDBLookupCombo LookupField property.

LookupTable
See TwwDBLookupCombo for description of LookupTable.

LookupValue
See TwwDBLookupCombo for description of LookupValue.

MaxHeight
Defines the maximum Height of the grid in the related dialog. Use this property to control the
height of the popup-dialog. The default value for a standard VGA display (640 x 480) is 209.
Data Type: Integer (Positive)

MaxWidth
This property defines how wide the dialog box is allowed to grow, in pixels. The default value
is 0, which allows the dialog box to grow to the entire width of the screen.
Data Type: Integer
Valid Values: Depends on your screen’s display resolution

Options
This property contains a set of Boolean values that control the appearance of the dialog box, as
described below. The default values are opShowOKCancel and opShowSearchBy.
Data Type: TSet()
Valid Values: opShowOKCancel, opShowSearchBy, opGroupControls, opFixFirstColumn and
opShowStatusBar (described below)

opShowOKCancel When True, the OK and Cancel buttons are displayed in the dialog
box. When False these buttons are not displayed—OK can be
simulated by double-clicking an entry or by selecting it and then
pressing the Enter key. Cancel can be simulated by pressing the Esc
key or by closing the dialog box window. The default is True.

Chapter 5 - InfoPower Component Reference, TwwDBLookupComboDlg 171

 opShowSearchBy When True, the Search By drop-down control is displayed in the
dialog box. When False, this control is not visible. The default value
is True.

opGroupControls When True, the Search Characters and Search By controls are
displayed side-by-side above the grid. When False, the Search
Characters control is displayed above the grid and the Search By
control is displayed below the grid. The default value is False.

opFixFirstColumn When True, the left-most column of the grid is fixed (non-
scrollable). When False, the left-most column can be scrolled out of
view. The default value is True.

opShowStatusBar For use with Paradox tables only. When True, a status bar is added
to the dialog box that displays the table name, current record
number and total number of records in the table.

OrderByDisplay
When True, this property will automatically change the LookupTable’s IndexName so that the
displayed field is the first field of the index. By changing the index, the drop-down list can be
viewed in the order of the displayed field instead of some hidden field which may be useless to
the end-user. This property has no effect unless you are using a TwwTable component for
your lookup. The default for this property is True.
Data Type: Boolean

SearchDelay
See the TwwDBLookupCombo SearchDelay property.

SeqSearchOption
 See TwwDBLookupCombo SeqSearchOption property.

ShowButton
When False, the drop-down button is not shown when the program executes. The default value
is True.
Data Type: Boolean

ShowMatchText
When this property is True this combo will have Quicken Style incremental searching and
highlight the text that is the closest match. The default value is False.
Data Type: Boolean

UserButton1Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton1Click event. The default value is blank.
Data Type: String

172 Chapter 5, InfoPower Component Reference , TwwDBLookupComboDlg

UserButton2Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton2Click event. The default value is blank.
Data Type: String

UseTFields
When the UseTFields property is set to true the Selected properties display settings are stored
and retrieved from the TFields of the LookupTable dataset. When it is set to False the
Selected properties display settings are stored with the TwwDBLookupCombo. The default is
True. Set this property to False if you have multiple controls attached to the same dataset and
each has different settings for its fields.
Data Type: Boolean

Removed properties
The following properties were removed: DropDownAlignment, DropDownCount and
DropDownWidth.

Required property assignments
DataField, DataSource, LookupField, LookupTable and Selected.

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwidlg.pas in the
InfoPower source sub-directory. If you do not have the source code version of InfoPower, then
perform the steps in Chapter 4's topic "Determining the object names of the controls contained
in an InfoPower dialog" on the wwidlg.dfm file contained in the InfoPower lib directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | SearchDialog property.

OnCloseDialog
This event allows you to perform any custom action before the dialog is actually closed.

OnInitDialog
Allows you to customize every aspect of the dialog box or perform some action during the
initialization of the dialog box. When using this event, your code must reference wwidlg in
your source file’s Uses clause. This gives you access to all the components in the dialog. For
example, you can modify the grid's properties, define custom events, etc.

Example: The following code tells the first user-defined button to show a hint when the user
moves the mouse pointer over the button:

procedure TForm1.wwDBLookupComboDlg1InitDialog(

Chapter 5 - InfoPower Component Reference, TwwDBLookupComboDlg 173

 Dialog: TwwLookupDlg);
begin
 Dialog.UserButton1.Hint := 'Hint for user button 1';
 Dialog.UserButton1.ShowHint := True;
end;

OnPerformCustomSearch
When using a large lookuptable from a remote server, the performance of the lookupcombo’s
incremental searching can significantly degrade. To resolve this issue, InfoPower adds a new
event where you can control the specific action that takes place after the user types a character,
or when the control needs to look up a value. In particular the custom action can update the
query to only return the records that you are interested in. When using this event, your code is
responsible for manipulating the lookuptable based on the parameter values passed in. This
event is also fired during incremental searching within the popup dialog. See the
TwwDBLookupCombo OnPerformCustomSearch event for a description of the events
parameters.

OnUserButton1Click
When you want to display developer-defined button #1 on the dialog box, enter the caption
text for the button in the UserButton1Caption property and then add code to this event that
will be executed when the end-user clicks the button.

Tip: If you wish for this dialog to immediately close after executing your code, assign the
ModalResult property of the dialog. The Sender parameter is cast to a TForm to get a handle
to the actual dialog on the screen.

procedure Tform1.wwDBLookupComboDlg1UserButton1Click(
 Sender: TObject; LookupTable: TDataSet);
begin
 (Sender as TForm).ModalResult := mrOK;
end;

OnUserButton2Click
When you want to display developer-defined button #2 on the dialog box, enter the caption
text for the button in the UserButton2Caption property and then add code to this event that
will be executed when the end-user clicks the button.

How-to

Change the default position of the pop-up dialog.:
The following code attached to the OnInitDialog event will change the default position of the
pop-up dialog to be (left=10, top=10).

procedure TForm1.wwDBLookupComboDlg1InitDialog(
 Dialog: TwwLookupDlg);
begin
 Dialog.Left:= 10;
 Dialog.Top:= 10;
end;

174 Chapter 5, InfoPower Component Reference , TwwDBLookupComboDlg

Make the dialog list show only records that meet certain criteria:
Attach code to the OnDropDown event that creates and activates a filter on the lookup table.
See the How-to section of the wwDBLookupCombo component for an example of how to do
this.

Update other fields based on the contents of a wwDBLookupComboDlg
component:
Attach code to the OnCloseUp event that sets the text property of other fields on the form. See
the How-to section of the wwDBLookupCombo component for an example of how to do this.

Tips
To activate the drop-down portion of this component via the keyboard, press the Alt+down
cursor arrow keys when the component has focus.

Chapter 5 - InfoPower Component Reference, TwwDBMonthCalendar 175

TwwDBMonthCalendar

 InfoPower's MonthCalendar control allows you to display a calendar to the end-user
in a variety of formats.

 Figure 5.12 - A TwwDBMonthCalendar with the year pop-up menu

• Display one or more months of a year in a single InfoPower calendar control.

• Hide/Show the Week Numbers, Today String, and Today Circle in the Drop Down Month
Calendar.

• Supports configurable pop-up menus when clicking on either the year or the month

• Code-based determination of which dates should be displayed in bold. For instance boldface
weekends, holidays, and paydays.

• Change the colors and fonts of the calendar.
• Use with or without a database.

Ancestor
TWinControl

 └─ TwwMonthCalendar

└─ TwwDBCustomMonthCalendar

Required supporting components
None

176 Chapter 5, InfoPower Component Reference , TwwDBMonthCalendar

Added Properties

CalColors
This property defines the colors the month calendar uses for its display.

MonthBackColor Background color of the days in the calendar. Defaults to clWhite.

TextColor Color used to display text within the month. Defaults to
clWindowText.

TitleBackColor Background Color displayed in the calendar’s title. Defaults to
clActiveCaption.

TitleTextColor Color used to display text within the calendar’s title. Defaults to
clWhite.

TrailingTextColor Color used to display header day and trailing day text. Header and
trailing days are the days from the previous and following months
that appear on the current month calendar. Defaults to
clInactiveCaption.

DataField
This property defines the name of the field you want to bind the MonthCalendar to. The
default value is blank (unbound).
Data Type: String
Valid Values: Valid field name

DataSource
This property defines the name of the TDataSource you want to bind the MonthCalendar to.
The default value is blank (unbound).
Data Type: TDataSource
Valid Values: Valid DataSource component name

Date
This property defines the date the month calendar initially displays as selected. This property
is ignored if the component is bound to a database field, as the date will then originate from
the value of the database field.
Data Type: TDateTime

EndDate
Run-time only. This property is used with Options | mdoMultiSelect. After the end-user has
selected a range of dates, this property is updated to contain the last date in the selected range.
See also the properties MaxSelectCount and MinDate.
Data Type: TDateTime

Chapter 5 - InfoPower Component Reference, TwwDBMonthCalendar 177

FirstDayOfWeek
Set this property to change the first day of week in the calendar. Default is
wwdowLocaleDefault, where the Windows operating system determines the first day of the
week.
Date Type: TwwCalDayOfWeek
Valid Values: wwdowMonday, wwdowTuesday, wwdowWednesday,

wwdowThursday, wwdowFriday, wwdowSaturday, wwdowSunday,
wwdowLocaleDefault

MaxDate
This property defines the maximum allowable date that the month calendar will allow the end-
user to select. The default is blank which means that the upper range of the calendar is not
restricted.
Data Type: TDateTime

MaxSelectCount
When Options | mdoMultiSelect is True, this property defines the maximum number of
consecutive days that can be selected.
Data Type: Integer

MinDate
This property defines the minimum allowable date that the month calendar will allow the end-
user to select. The default is blank which means that the lower range of the calendar is not
restricted. Note: The calendar does not support dates less than the year 1900.
Data Type: TDateTime

Options
This property defines a set of options for the month calendar control.
Data Type: Set of TwwMonthOption;
Valid Values: mdoDayState, mdoWeekNumbers, mdoNoToday, mdoNoTodayCircle,

mdoMultiSelect

mdoDayState When True, the OnCalcBoldDay event is fired.

mdoWeekNumbers When True, week numbers are displayed at the far left column of the
calendar

mdoNoToday When True, the month calendar control will not display the "today"
date at the bottom of the control.

mdoNoTodayCircle When True, the month calendar control will not circle the "today"
date.

mdoMultiSelect When True, the month calendar will allow the user to select a range
of dates within the control. By default, the maximum range is one
week. You can change the maximum range that can be selected by
using the MaxSelectCount property.

178 Chapter 5, InfoPower Component Reference , TwwDBMonthCalendar

PopupYearOptions
NumberColumns Set this property to change the number of columns in the pop-up year

menu. The pop-up menu appears when the user clicks on the year in
the calendar. This property defaults to 2

StartYear Set this property to change the starting year in the pop-up year menu
YearsPerColumn Change this property to change the number of year per column in the

pop-up year menu. It defaults to 10
ShowEditYear When True, the pop-up year menu for the calendar control has a way

of entering the year with an edit box.

StartDate
Run-time only. This property is used with Options | mdoMultiSelect. After the end-user has
selected a range of dates, this property is updated to contain the first date in the selected range.
See also the properties MaxSelectCount and MinDate.
Data Type: TDateTime

Time
This property defines the internal time that the month calendar stores. This is never displayed
to the end-user, but is used internally when updating a database field
Data Type: TDateTime
Valid Values: Valid TDateTime value

Required property assignments
None

Added or modified events

OnCalcBoldDay
This event allows you to calculate which dates should be displayed in bold. This event is only
called if Options | mdoDayState is True.

The parameters for this event are as follows.

Sender: TObject Calendar control to compute attributes

ADate: TDate Date to evaluate

Month, Day, Year: Integer Month, Day, Year to evaluate

Accept: Boolean Set to True to boldface the date in the calendar

Example: The following example boldfaces all weekend days in the calendar.
procedure TMainDemo.wwDBMonthCalendar1CalcBoldDay(Sender: TObject;
 ADate: TDate;Month, Day, Year: Integer; var Accept: Boolean);
begin
 if DayOfWeek(ADate)=1 then Accept := True;
 if DayOfWeek(ADate)=7 then Accept := True;
end;

Chapter 5 - InfoPower Component Reference, TwwDBMonthCalendar 179

OnMouseMove
Use the OnMouseMove event handler to implement any special processing that should occur
as a result of the mouse moving over a date.

The parameters for this event are as follows.

Sender : TObject Calendar control where the mouse action took place.

Shift : TShiftState Indicates the state of the Shift keys at the time the
mouse was pressed or released.

X,Y: integer; The mouse position at the time that the mouse was
moved. X and Y are the pixel coordinates of the
mouse pointer in the client area of the Sender.

Month,Day,Year: integer; Indicates which date on the calendar the mouse cursor
is over at the time the event is fired. If Day is 0, then
the mouse is not over any date.

OnMouseDown, OnMouseUp
Use the OnMouseDown or OnMouseUp event handlers to implement any special processing
that should occur as a result of pressing or releasing a mouse button

The parameters for this event are as follows.

Sender : TObject Calendar control where the mouse action took place.

Button : TMouseButton Indicates which mouse button was pressed or released.

Shift : TShiftState Indicates the state of the Shift keys at the time the
mouse was pressed or released.

X,Y: integer; The mouse position at the time the mouse was pressed
or released. X and Y are the pixel coordinates of the
mouse pointer in the client area of the Sender.

Month,Day,Year: integer; Indicates which date on the calendar the mouse cursor
is over when the mouse button is pressed or released.
If Day is 0, then the mouse is not over any date.

How To
Display more than one month in the calendar control
By increasing the control’s Width and the Height properties, the control will fit additional
months into the client area.

Selecting a range of dates
To select a range of dates, you need to set the Options | mdoMultiSelect to True. To later
determine the date range selected by the user, you can refer to the StartDate and EndDate

180 Chapter 5, InfoPower Component Reference , TwwDBMonthCalendar

properties. To control the maximum number of dates that can be in the date-range use the
MaxSelectCount property.

Chapter 5 - InfoPower Component Reference, TwwDBNavigator 181

TwwDBNavigator

 InfoPower includes an extendable DBNavigator component (database navigator to
move through and manipulate the data in a dataset), which supports user-definable images and
actions, integration with InfoPower’s dialogs, flexible control over the layout, user-definable
page sizes, and support for multiple rows of icons.

 Figure 5.13 - A TwwDBNavigator component

The InfoPower navigator allows you to transparently display the navigator and its related
buttons. This helps your applications present a very professional and polished look.

Ancestor
TwwCustomTransparentPanel

Required supporting components
None

Added Properties

AutoSizeStyle
This property defines how the navigator will auto-size itself and its buttons when the size of
the navigator changes. Set this property to asSizeNavigator if you wish for the navigator to
change its size to ensure the navigator’s buttons fit. Set this property to asSizeNavButtons to
adjust the size of the buttons to accommodate the size of the Navigator. When AutoSizeStyle
is asNone, no auto sizing occurs.
Data Type: TwwNavAutoSizeStyle
Valid Values: asSizeNavigator, asSizeNavButtons, asNone

Buttons
This property contains a collection of buttons assigned to the navigator. Each collection item
is of type TwwNavButton. Clicking on this property from the object inspector brings up
InfoPower’s collection editor.
Data Type: TwwNavButtons

TwwNavButtons has the following properties you can access during program execution:

Count Returns the number of buttons in the navigator.
Navigator Returns the corresponding TwwDBNavigator for the buttons

182 Chapter 5, InfoPower Component Reference , TwwDBNavigator

Items Items is an array containing TwwNavButton objects. The value of the
Index parameter corresponds to the Index property of TwwNavButton. It
represents the position of the item in the collection.

property Items[Index: Integer]: TwwNavButton

Each button is of type TwwNavButton, and has the following properties:

Caption Text displayed beneath button. Requires that the ShowText property be
set to True.

Dialog This property is used in conjunction with the Style property to execute a
custom InfoPower dialog. When the style property is set to one of the
dialog styles, and this property is set, then the corresponding Dialog will
execute.

Flat Runtime only - Set this property to True so that the navigator button
appears flat, and does not have borders separating them.

Index Set this property to change the order within the TwwNavButtons
collection.

ImageIndex Setting this property will override (if any) the image settings and display
an image from the navigator’s assigned ImageList.

LineBreak Set this property to True to force a line or column break within the
navigator. The navigator’s Layout property determines if it is a column
break (nlVertical), or a line break (nlHorizontal).

Margin Margin is the number of pixels between the edge of the button and the
image or caption drawn on its surface. If set to –1, then the
image/caption are automatically centered.

NumGlyphs Set this property to change the number of glyphs in the ImageList to
associate with this button. See also the ImageIndex property, and the
navigator’s ImageList property.

ShowText Set to True to display the Caption beneath the bitmap.
Spacing Set Spacing to the number of pixels that should appear between the

image specified by the ImageIndex property and the text specified in the
Caption property.

Style This property determines the behavior and appearance of the button.
When setting this property, the image on the button will change to
reflect the new style. The action that occurs when clicking on the button
is dependent on this property. If this style is set to nbsCustom, then no
default behavior occurs.

When this property represents one of the InfoPower dialogs, then one of
two possible actions can occur. If the Dialog property is assigned, then
the Dialog is executed when the button is clicked. If the dialog is

Chapter 5 - InfoPower Component Reference, TwwDBNavigator 183

unassigned, then a dynamically generated Dialog will be created and
executed. These dialogs will stay in memory until either the DataSet is
destroyed (if style is nbsFilterDialog) or when the Navigator is destroyed
(all other Dialog styles).

NavButtons Runtime only – Returns the collection (TwwNavButtons) that contains
this button

Navigator Runtime only – Returns the navigator (TwwDBNavigator) that contains
this button

DataSource
This property defines the name of the TDataSource you want to bind the Navigator to.
Data Type: TDataSource
Valid Values: Valid DataSource component name

Flat
Set this property to True so that the navigator buttons appear flat, and do not have borders
separating them. When False, the buttons are clearly defined.
Data Type: Boolean

ImageList
Set this property to the TImageList you wish for the buttons to reference via their ImageIndex
property.
Data Type: Boolean

Layout
This property specifies the way the buttons are positioned and sized. If this property is set to
nlHorizontal, buttons are positioned in a left to right order and begin a new row of buttons
when reaching the right side of the navigator. When this property is set to nlVertical, buttons
are positioned in a top to bottom order and begin a new column of buttons when reaching the
bottom side of the navigator.
Data Type: TwwNavLayout
Valid Values: nlHorizontal, nlVertical

MoveBy
This property determines the number of records the navigator moves forwards or backwards
when the NextPage and PriorPage buttons are pressed.
Data Type: Integer

Options
Options to control the navigator’s behavior.
Data Type: Set of TwwNavOptions
Valid Values: noConfirmDelete, noUseInternationalText

184 Chapter 5, InfoPower Component Reference , TwwDBNavigator

noConfirmDelete Set this property to True to bring up a confirmation dialog
before deleting a record.

noUseInternationalText Set this property to True to force the TwwDBNavigator’s hints
to use the Text that has been set in the TwwIntl component. If
this is False, then the default hints will be determined by the
international settings when the control was created.

RepeatInterval
This property controls the auto-repeat timing of the navigator. When a user clicks a button
and does not release the mouse, the navigator will re-execute the last clicked button after an
initial delay. Thereafter it will continue to repeat the execution of the last clicked button until
the button is released. For instance if the user presses the Next Record button and holds the
mouse down, it will continually advance through the dataset until the mouse button is released.

InitialDelay The number of milliseconds that passes from the time that the user
presses a button to when the button’s action begins to repeat.

Interval The number of milliseconds that passes between each successive
repeat of the button’s action, after the initial delay.

Transparent
Set this property to true to paint the navigator transparently.

TransparentClearsBackground
This property is now obsolete. See the Transparent property.

Added Events

OnResize
This event is fired when the TwwDBNavigator is being resized.

TwwNavButton events

OnAfterCreateDialog
Use this event to customize the behavior and/or appearance of the dynamically generated
InfoPower dialog. This event is called immediately after the dialog has been created. The
event will only fire if the Dialog property for the Button is unassigned and the style
property is set to that of an InfoPower dialog.

OnRowChanged
This event occurs immediately after the current record position of the TDataSet has
changed.

OnUpdateState

Chapter 5 - InfoPower Component Reference, TwwDBNavigator 185

This event is fired when an action occurs that may cause the state of the button to change.
For example, when the Active property of the DataSet changes, this event is fired. The
following parameters are passed to this event.

Navigator: TwwDBNavigator TwwDBNavigator containing this button

Button: TwwNavButton Button associated with event

Cause: TwwUpdateCause Reason the event was fired. Can be one of the following:

usDataChanged, usEditingChanged, usActiveChanged, or
usOther.

Added Methods

SetDataSourceFromComponent
Call this method to set the Navigator’s DataSource property to the DataSource of
Component. If AllowNil is true and the DataSource property of Component is nil, then the
Navigator’s DataSource property will be set to nil. Otherwise this method never clears the
Navigator’s DataSource property.
Procedure SetDataSourceFromComponent(
 Component: TComponent; AllowNil: boolean); virtual;

TwwNavButtons methods
Add Adds a new button to the navigator. The AStyle and

AComponent parameters set the Style and Dialog properties of
the TwwNavButton.

function Add(

AStyle: TwwNavButtonStyle;
AComponent: TComponent): TwwNavButton;

AddInfoPowerDialogs Adds all the InfoPower dialogs to the navigator

Clear Clear all the buttons from the navigator

TwwNavButton methods
Click This method handles the default action of the Button. Call this method to

simulate the action (clicking) of the button

IsVisible Returns True if the Button’s position is such that it is within the boundaries
of the TwwDBNavigator.

How-to
Design-time Tips

186 Chapter 5, InfoPower Component Reference , TwwDBNavigator

Right-click the navigator at design time to bring up the following selections:

Add Button – Adds a new navigator button.

Add InfoPower Dialogs – Adds a navigator button for the following InfoPower dialogs
(i.e. TwwFilterDialog, TwwLocateDialog, etc.).

Select All Buttons – This enables you to select all the buttons at design time. This is
useful if you want to modify a property for all the buttons.

Selecting a button without bringing up the collection editor
You can select any button in the navigator by holding down the space key and then
clicking on the button.

Using the Navigator's collection editor

The Navigator's collection editor is modeled after Delphi's existing collection editor. The
functionality of the buttons at the top are as
follows (in order):

New Button: Creates a new TwwNavButton
and adds into the Navigator. (Equivalent to
the TwwNavButtons.Add method)

Delete Button: Deletes the currently selected
button(s) from the Navigator. (Equivalent to
calling TwwNavButton.Free)

Move Button Up: Moves the currently
selected button up one level. (Equivalent to
decrementing the TwwNavButton.Index
property by one).

Move Button Down: Moves the currently
selected button down one level. (Equivalent
to incrementing the TwwNavButton.Index
property by one).

Add InfoPower Dialogs: Adds a button corresponding to each of the InfoPower
Dialogs to the Navigator. (Includes: TwwFilterDialog, TwwLocateDialog,
TwwRecordViewDialog, and TwwSearchDialog)

Creating logical groupings and regions for the
navigator buttons
Use multiple navigators assigned to the same
datasource to increase the flexibility of your
navigator’s layout. For instance the diagram to the
right uses three navigators to get its effect.

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 187

TwwDBRichEdit, TwwDBRichEditMSWord

 Woll2Woll has greatly enhanced the native RichEdit in Delphi, and includes both
data-aware and non data-aware versions.
TwwDBRichEditMSWord : InfoPower uses a separate richedit component for integration
with MSWord. This component allows the end-users to spell check or grammar check the
document using Microsoft Word’s native spell checker. The reason we have introduced a
separate new component is to avoid the dependence upon the COM Office automation
packages when not using MSWord’s spell checker. If you use the TwwDBRichEditMSWord
component, we recommend that you do NOT put the corresponding IP4000WORD***
package in your project’s runtime package list. By avoiding use of these packages as run-
time packages, you can omit the distribution of the related Office automation packages as
well as these packages.
InfoPower’s richedit control now additionally supports the following:
• New in InfoPower 4000 - Now supports importing from Microsoft Word or mporting

and exporting to HTML Other formats also supported based on the text filters installed
on the client computer. For instance, you can import from an Excel spreadsheet. See
the \ip4000\demos\richedit\converter.pas file for an exmple of how to import and export.
In particular, see the richedit’s Import and Export methods.

• New in InfoPower 4000 - Define headers and footers when using the richedit's Print
method. See the \ip4000\demos\richedit\printheader.pas file for an exmple of how to
incorporate a header and footer in the richedit’s hardcopy printout. In particular see the
PrintHeader and PrintFooter properties.

• New Mail Merge Example - Use database fields to fill a richedit's contents. See the
\ip4000\demos\richedit\mailmerge.pas file for an example of performing mail-merge
with the InfoPower richedit control. The basic idea is to use a template richedit which
contains the tags you wish to replace. Then use another richedit control that is to
contain the actual contents with the replaced text.

The following lists some of the capabilities of these components.

♦ Full Text Justification Support: InfoPower now adds full text justification so that the
text is aligned to both the left and right margins. This requires the latest riched20.dll
(RichEdit Version 3).

♦ Enhanced OLE Support: InfoPower adds additional OLE dialogs to allow
modification of an OLE object’s properties. OLE link to file is now supported.

♦ Supports Transparency and custom framing – Since this control can be used
transparently you can now easily use this control like a RichEdit Label control for rich
formatted labels in your applications.

 Bitmap and OLE support : Embed bitmaps and OLE objects directly into the
RichEdit control. You can even save these to your database.

188 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

 Paragraph ruler and spacing control: Set paragraph indentations within the pop-up
rich-edit dialog using an accurate ruler. End-user can also specify the space before and
after the paragraph as well as defining the line spacing

 Internet URL Links : URL addresses in the rich-edit text are automatically
underlined. The component will also automatically open the specified URL with the
Internet Browser.

 Multi-level undo and redo : Undo or redo a series of actions.

 Integrated RTF Word processor : End-users can bring up InfoPower's powerful RTF
word processor to give them a full word-processor.

 Customize printer margins, orientation, and paper size : Supports end-user
customization of the page layout using the Windows PageSetup common dialog.

 Database Search and Filter : After storing RTF text into database blob fields, you
can still have access to InfoPower's powerful database searching and filtering
capabilities.

 Integration with Microsoft Word’s Spelling and Grammar checking: Use
Microsoft Word’s Spell check to spell check or grammar check the document. You
must use the TwwDBRichEditMSWord component.

 Background highlighting of selected text: The user can highlight selected text so that
it stands out.

 Extensive pop-up menu support : All of the component’s functionality is accessible to
the end-user by right-clicking the component.

 Design-time support for entering rich-edit text and OLE into the control. Delphi's
version cannot store formatted text into a control during design time.

 Seamless integration with InfoPower's Grid and RecordView Components

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 189

Figure 5.14 – InfoPower’s TwwDBRichEdit component allows your end-users to use a full
rich text editor to edit richtext fields.

Added Properties

AutoURLDetect
When True, URL addresses in the rich-edit text are automatically underlined. The component
will also automatically open the specified URL with the Internet Browser when the user clicks
on the link. Use the OnURLOpen event to change this default behavior
Data Type: Boolean

DataField
This property defines the name of the field you want displayed in the memo editor window.
The default value is blank. If you do not wish to bind the rich-edit control to a table field, then
leave both the DataField and DataSource properties as blank.
Data Type: String

190 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

Valid Values: Valid field name where the field is of type TBlobField

DataSource
This property contains the name of a TDataSource component that provides the RichEdit
control with data. The default value is blank.
Data Type: TDataSource
Valid Values: Valid DataSource component name

EditorCaption
This property contains a text value that is displayed in the pop-up editor window’s title bar.
The default value is ‘Edit Rich Text’.
Data Type: String

EditorOptions
This property contains a set of Boolean values that control the display of pop-up richtext
editor. The user invokes the pop-up richtext editor by right-clicking the control and selecting
Edit. Alternatively they can invoke the editor by pressing F2. Note that these options affect
the pop-up richtext editor, and not the pop-up menu.
Data Type: Set of TwwRichEditOption
Valid Values: reoShowLoad, reoShowSaveAs, reoShowSaveExit,

reoShowPrint, reoShowPageSetup, reoShowFormatBar,
reoShowToolBar, reoShowStatusBar, reoShowHints, reoShowRuler,
reoShowInsertObject, reoCloseOnEscape, reoFlatButtons, reoShowSpellCheck,
reoShowMainMenuIcons, reoShowJustifyButton

reoShowSaveExit If True, then the File | Save & Exit menu selection is displayed.
This menu selection allows the end-user to save their changes
and exit the pop-up editor. Defaults to True

reoShowLoad If True, then the File | Load menu selection is displayed. This
menu selection allows the end-user to load text from a file.
Defaults to False.

reoShowSaveAs If True, then the File | Save As menu selection is displayed.
This allows the end-user to save the richedit’s contents to a file.
Defaults to False.

reoShowPrint If True, then the File | Print menu selection is
displayed. This menu selection allows the end-user to print the
richedit’s contents. Defaults to True

reoShowPageSetup If True, then the File | Page Setup menu selection is displayed.
This menu selection allows the end-user to customize the page-
setup in preparation for printing. Defaults to True.

reoShowFormatBar If True, then the FormatBar is displayed. The FormatBar
contains icons for formatting the text. Defaults to True.

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 191

reoShowToolBar If True, then the ToolBar is displayed. The ToolBar contains
icons for clearing, printing, searching, and clipboard
operations. Defaults to True.

reoShowStatusBar If True, then the StatusBar is displayed at the bottom of the
pop-up richtext editor. The StatusBar contains the Keyboard
State (Caps and Num Lock) and Hints. Defaults to True.

reoShowHints If True, then Hints are enabled for the icons and menu
selections. Defaults to True.

reoCloseOnEscape If True, then the Escape key will close the dialog with a
ModalResult of mrCancel. Default is True.

reoShowRuler When True, then the editor displays a ruler to allow the end-
user to customize the paragraph indentations.

reoShowInsertObject When True, then the Insert | Object… menu selection is
displayed. The menu selection allows the end-user to insert an
OLE object .

reoFlatButtons When True, the editor’s buttons appear flat and do not have
borders separating them. When False, the buttons are clearly
defined.

reoShowSpellCheck When True, the editor displays a speed button which will
invoke the Microsoft Word spell checker to spell check the
document. Note: Spell checking is only enabled if you are using
Delphi5 and the TwwDBRichEditMSWord component.

reoShowMainMenuIcons When True, the editor’s main menu will display icons for
certain menu selections.

reoShowJustifyButton When True, the editor displays a speed button which when
clicked will fully justify the paragraph. Support of this
capability is dependent upon your user’s environment
supporting RichEdit version 3. Right-click the file
\windows\system\riched20.dll from windows explorer, and
check its version description. It will indicate something like
“Rich Text Edit Control v3.0” if it supports version 3.
Windows 2000 and Office 2000 should come with version 3 of
riched20.dll and update your environment accordingly.

reoUseBackColor When True, the editor’s background color of its embedded
richedit control will be the same color as the associated richedit
control.

reoNoConfirmation When True, the editor will not prompt the user with a
confirmation dialog, but instead will assume that the editor
changes are copied back to the associated richedit control.

192 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

EditorPosition
This property allows you to determine the location and size of the pop-up word processor.

Height Height in pixels of the pop-up word processor. Default of 0 means to use the
default height.

Left Left position of the pop-up word processor. Default of 0 means to auto-center the
editor horizontally.

Top Top position of the pop-up word processor. Default of 0 means to auto-center the
editor vertically.

Width Width in pixels of the pop-up word processor. Default of 0 means to use the
default width.

EditWidth
This property determines the wrapping boundaries of the pop-up richtext editor. If set to
rewWindowSize then text is wrapped according to the window boundaries. If set to
rewPrinterSize then text is wrapped as defined by the page layout settings. Defaults to
rewPrinterSize.
Data Type: TwwRichEditWidth
Valid Values: rewWindowSize, rewPrinterSize

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for
information on this property.
Data Type: TwwEditFrame

GutterWidth
Set this property to change the number of pixels of fixed spacing between the text and the edge
of the control.
Data Type: Integer

HighlightColor
Set this property to change the color used to highlight text in the word processor. It defaults to
clYellow. The user can highlight text in the word processor by clicking on the speed
button.

Lines
This property contains the individual lines of text in the rich text edit control. Click on this
property at design time to assign rich-edit text to an unbound control.
Use Lines to manipulate the text in the rich text edit control on a line by line basis. Lines is a
TStrings object, so TStrings methods may be used for Lines to perform manipulations such as
counting the lines of text, adding lines, deleting lines, or replacing the text in lines.
To work with the text as one chunk, use the Text property. To manipulate individual lines of
text, the Lines property works better.
Data Type: TStrings

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 193

MeasurementUnits
Unit of measurement to display in the control’s dialogs (i.e. PageSetup, Tab Settings,
Paragraph Settings). Also determines the units of the PrintMargins property.
Data Type: TwwMeasurementUnits
Valid Values: muInches, muCentimeters

OLEOptions
reoAdjustPopupMenu When True, if an OLE is selected, the pop-up menu is adjusted to

include the menu selections relating to the selected OLE object.
User can click on the Insert Object… popup selection to bring up
a dialog to insert an OLE object.

reoDisableOLE When True, the end-user will not be able to embedding any OLE
object.

PrintFooter
Assign this property to integrate headers into the printed output produced from the Print
method. If you wish to include page numbers in your footer, then assign the footer’s text using
the OnPrintFooter event.

Example: The following code attached to the OnPrintFooter event assigns the text like “Page
1 of 5” to the right-most text in the footer, and assigns the current date to the left-most text.

procedure TPrintHeaderForm.wwDBRichEdit1PrintFooter(Sender:
TwwCustomRichEdit;
 DrawRect: TRect; PageNumber: Integer; var LeftText, CenterText,
 RightText: String; var DoDefault: Boolean);
begin
 RightText:= 'Page ' + inttostr(PageNumber) + ' of ' +
 inttostr(Sender.TotalPages);
 LeftText:= datetostr(date);
end;

Data Type: TwwRTFHeaderFooter

TwwRTFHeaderFooter is a class defined as follows:
VertMargin : Double Vertical unit space separting footer from edge of text
LeftText: string Assign this property to define the text that appears on the left of the

footer.
CenterText: string Assign this property to define the text that appears in the middle of

the footer.
RightText: string Assign this property to define the text that appears on the right of

the footer.
Font: TFont Assign this property to modify the font of the footer
LineSeparator: Boolean Set to true to include a line separating the footer from the richedit

text.

194 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

PrintHeader
Assign this property to integrate headers into the printed output produced from the Print
method. If you wish to include page numbers in your footer, then assign the header’s text
using the OnPrintHeader event. See the PrintFooter property for an example of including
page numbers, as well as a description of he TwwRTFHeaderFooter type.
Data Type: TwwRTFHeaderFooter

PrintPageSize
This defines the page size of the richedit control. Some of the possible values are as follows.
These values are defined by windows.
Data Type: Integer
Valid Values: See Below

 DMPAPER_LETTER = 1; { Letter 8 12 x 11 in }
 DMPAPER_FIRST = DMPAPER_LETTER;
 DMPAPER_LETTERSMALL = 2; { Letter Small 8 12 x 11 in }
 DMPAPER_TABLOID = 3; { Tabloid 11 x 17 in }
 DMPAPER_LEDGER = 4; { Ledger 17 x 11 in }
 DMPAPER_LEGAL = 5; { Legal 8 12 x 14 in }
 DMPAPER_STATEMENT = 6; { Statement 5 12 x 8 12 in }
 DMPAPER_EXECUTIVE = 7; { Executive 7 14 x 10 12 in }
 DMPAPER_A3 = 8; { A3 297 x 420 mm }
 DMPAPER_A4 = 9; { A4 210 x 297 mm }
 DMPAPER_A4SMALL = 10; { A4 Small 210 x 297 mm }
 DMPAPER_A5 = 11; { A5 148 x 210 mm }
 DMPAPER_B4 = 12; { B4 (JIS) 250 x 354 }
 DMPAPER_B5 = 13; { B5 (JIS) 182 x 257 mm }
 DMPAPER_FOLIO = 14; { Folio 8 12 x 13 in }
 DMPAPER_QUARTO = 15; { Quarto 215 x 275 mm }
 DMPAPER_10X14 = 16; { 10x14 in }
 DMPAPER_11X17 = 17; { 11x17 in }
 DMPAPER_NOTE = 18; { Note 8 12 x 11 in }
 DMPAPER_ENV_9 = 19; { Envelope #9 3 78 x 8 78 }
 DMPAPER_ENV_10 = 20; { Envelope #10 4 18 x 9 12 }
 DMPAPER_ENV_11 = 21; { Envelope #11 4 12 x 10 38 }
 DMPAPER_ENV_12 = 22; { Envelope #12 4 \276 x 11 }
 DMPAPER_ENV_14 = 23; { Envelope #14 5 x 11 12 }
 DMPAPER_CSHEET = 24; { C size sheet }
 DMPAPER_DSHEET = 25; { D size sheet }
 DMPAPER_ESHEET = 26; { E size sheet }
 DMPAPER_ENV_DL = 27; { Envelope DL 110 x 220mm }
 DMPAPER_ENV_C5 = 28; { Envelope C5 162 x 229 mm }
 DMPAPER_ENV_C3 = 29; { Envelope C3 324 x 458 mm }
 DMPAPER_ENV_C4 = 30; { Envelope C4 229 x 324 mm }
 DMPAPER_ENV_C6 = 31; { Envelope C6 114 x 162 mm }
 DMPAPER_ENV_C65 = 32; { Envelope C65 114 x 229 mm }
 DMPAPER_ENV_B4 = 33; { Envelope B4 250 x 353 mm }
 DMPAPER_ENV_B5 = 34; { Envelope B5 176 x 250 mm }
 DMPAPER_ENV_B6 = 35; { Envelope B6 176 x 125 mm }
 DMPAPER_ENV_ITALY = 36; { Envelope 110 x 230 mm }
 DMPAPER_ENV_MONARCH = 37; { Envelope Monarch 3.875 x 7.5 in }
 DMPAPER_ENV_PERSONAL = 38; { 6 34 Envelope 3 58 x 6 12 in }
 DMPAPER_FANFOLD_US = 39; { US Std Fanfold 14 78 x 11 in }
 DMPAPER_FANFOLD_STD_GERMAN = 40; { German Std Fanfold 8 12 x 12 in }

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 195

 DMPAPER_FANFOLD_LGL_GERMAN = 41; { German Legal Fanfold 8 12 x 13 in }

PopupMenu
Pop-up menu for the rich text control There already is a built-in pop-up menu for this control,
but you can override it to use your own with this property. See also the PopupOptions property
as this allows you to customize the built-in PopupMenu.
Data Type: TPopupMenu

PopupOptions
This property allows you to select which selections are available to the end-user through the
pop-up menu.
Data Type: Set of TwwRichEditPopupOption
Valid Values: rpoPopupEdit, rpoPopupCut, rpoPopupCopy, rpoPopupPaste,

rpoPopupBold, rpoPopupItalic, rpoPopupUnderline, rpoPopupFont, rpoPopupBullet,
rpoPopupParagraph, rpoPopupTabs, rpoPopupFind, rpoPopupReplace,
rpoPopupInsertObject, rpoPopupMSWordSpellCheck

rpoPopupEdit If True, then the user can click on the Edit popup selection to bring
up a pop-up editor window. Defaults to True.

rpoPopupCut If True, then the user can click on the Cut popup selection to cut the
currently selected text. Defaults to True.

rpoPopupCopy If True, then the user can click on the Copy popup selection to copy
the currently selected text to the clipboard. Defaults to True.

rpoPopupPaste If True, then the user can click on the Paste popup selection to paste
the clipboard’s contents to the control. Defaults to True.

rpoPopupBold If True, then the user can click on the Bold popup selection to bold-
face the currently selected text. Defaults to False.

rpoPopupItalic If True, then the user can click on the Italic popup selection to
italicize the currently selected text. Defaults to False.

rpoPopupUnderline If True, then the user can click on the Underline popup selection to
underline the currently selected text. Defaults to False.

rpoPopupFont If True, then the user can click on the Font popup selection to
change the font of the currently selected text. Defaults to True.

rpoPopupBullet If True, then the user can click on the Bullet popup selection to
enable or disable bullets for the currently selected text. Defaults to
True.

rpoPopupParagraph If True, then the user can click on the Paragraph popup selection to
underline the currently selected text. Defaults to True.

rpoPopupTabs If True, then the user can click on the Tabs popup selection to
customize the tab-stops for the currently selected text. Defaults to
True.

196 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

rpoPopupFind If True, then the user can click on the Find popup selection to bring
up a dialog to search for text in the edit control. Defaults to True.

rpoPopupReplace If True, then the user can click on the Replace popup selection to
bring up a dialog to search and replace text in the edit control.
Defaults to True.

rpoPopupInsertObject When True, the user can click on the Insert Object…
popup selection to bring up a dialog to insert an OLE
object.

rpoPopupMSWordSpellCheck When True, the user can click on the Check Spelling
popup selection to bring up a the Microsoft Word spell
check to spell check the document. Note: Spell checking
is only enabled if you are using Delphi5 and the
TwwDBRichEditMSWord component

PrintJobName
Set this property to change the print job name used by the pop-up word processor when the
user selects the File | Print menu selection.

PrintMargins
This property allows you to define printer margins for when you print the contents of the
control. The units of measurement are defined by the TwwDBRichEdit’s MeasurementUnits
property.

Bottom Blank space to leave at the bottom of the printout.
Data Type: Double
Valid Values: Valid value for the printer page layout. Value type is defined by
the MeasurementUnits property.

Left Blank space to leave at the left-edge of the printout.

Data Type: Double
Valid Values: Valid value for the printer page layout. Value type is defined by
the MeasurementUnits property.

Right Blank space to leave at the right-edge of the printout.

Data Type: Double
Valid Values: Valid value for the printer page layout. Value type is defined by
the MeasurementUnits property.

Top Blank space to leave at the top of the printout.

Data Type: Double
Valid Values: Valid value for the printer page layout. Value type is defined by
the MeasurementUnits property.

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 197

UserSpeedButton1
Add additional speedbuttons to the pop-up richedit dialog to integrate other 3rd-party tools
such as RTF spell checkers. Set this property to the speedbutton you wish to add to the word-
processor, and attach the code to the speedbutton that you wish to execute when it is clicked.
For instance the following code inserts the current date into the control

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
 with TwwRichEditForm(GetParentForm(Sender as TControl)).richedit1 do
 begin
 sellength:= 0;
 selText:= DateToStr(Date);
 end
end;

Note: You will need to add wwrich to your form’s uses clause to resolve the
TwwRichEditForm reference.

Data Type: TSpeedButton
Valid Values: Any TSpeedButton control.

UserSpeedButton2
This gives you a 2nd speed button to add to the word processor. See UserSpeedButton1 for its
usage.

Added Events
Some of the following events pass a handle to the form containing the richtext editor. To see
what objects are contained within this editing form, open up wwrich.pas in the InfoPower
source sub-directory. If you do not have the source code version of InfoPower, then perform
the steps in Chapter 4's topic "Determining the object names of the controls contained in an
InfoPower dialog" on the wwrich.dfm file contained in the InfoPower lib directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | RichEdit property.

OnCloseDialog
This event allows you to perform any custom action before the pop-up richtext editor is closed.

The parameters for this event are as follows.

Form: TForm TForm handle to popup richtext editor

OnCreateDialog
This event allows you to perform any custom action immediately after the pop-up richtext
editor is created. You may wish to use this event instead of the OnCloseDialog event if you
need the code executed before the pop-up editor window is created.

198 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

The parameters for this event are as follows.

Form: TForm TForm handle to popup richtext editor

OnInitDialog
This event allows you to perform any custom action before the pop-up richtext editor is
initially displayed.

OnMenuLoadClick
This event allows you to perform any custom action when the user selects Load from the pop-
up word processor. The parameters for this event are as follows.

Form TForm handle to popup richtext editor

RichEdit RichEdit on the pop-up word processor. Do not confuse this with the richedit
on your own form.

DoDefault Set to False to prevent the default action from occurring.

OnMenuPrintClick
This event allows you to perform any custom action when the user selects Print from the pop-
up word processor. See the OnMenuLoadClick event for a description of the parameters to this
event.

OnMenuSaveAsClick
This event allows you to perform any custom action when the user selects ‘Save As’ from the
pop-up word processor. See the OnMenuLoadClick event for a description of the parameters to
this event.

OnMenuSaveAndExitClick
This event allows you to perform any custom action when the user selects ‘Save and Exit’ from
the pop-up word processor. See the OnMenuLoadClick event for a description of the
parameters to this event.

OnPrintFooter
This event allows you to customize the footer for each page. The event is fired prior to the
formatting of each page for the printer when using the richedit’s Print method.. This event is
useful for inserting dynamic page information into the printed output, such as page numbers.
See the PrintFooter property for an example of using this event.

Sender: TwwCustomRichEdit RichEdit control associated with footer

DrawRect: TRect Printing rectangle for footer/header

var LeftText, CenterText, RightText: string

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 199

 Assign these properties to customize the text in the
footer/header

PageNumber: integer Current page of printed output

var DoDefault: Boolean Set this property to False to disable the default
formatting of the footer/header. You may wish to set
this to false if you have done your own painting of the
footer/header

OnPrintHeader
This event allows you to customize the header for each page. The event is fired prior to the
formatting of each page for the printer when using the richedit’s Print method.This event is
useful for inserting dynamic page information into the printed output, such as page numbers.
See the PrintFooter property for an example of using this event.

See the OnPrintFooter event for a description of the parameters.

OnURLOpen
When the end-user clicks on an URL link with the document, the rich edit control will open
the default Internet Browser at the specified URL address. If you wish to change this behavior,
you can use this event to perform your own custom actions.

The parameters for this event are as follows.

Sender: TwwCustomRichEdit RichEdit control containing the URL link

URLLink: String; String containing the text of the URL link

UseDefault: boolean; Set to True to perform the default behavior of opening
the link with the default Internet Browser. Set to False
to disable the default behavior.

Added Methods

AppendRichEditFrom
Calling this method appends the contents of SourceRichEdit to the current richedit control.
Procedure AppendRichEditFrom(SourceRichEdit: TCustomRichEdit);

CanPaste
This method returns true if there is text in the clipboard that can be pasted into the control.
Function CanPaste: boolean;

CanUndo
This method returns true if the control is capable of undoing the last editing operation.

200 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

Function CanUndo: boolean;

CanCut
This method returns true if the there is selected text which can be cut to the clipboard.
Function CanCut: boolean;

CanFindNext
This method returns true if the control repeat the last search operation. The return value will
be false if no search has been previously performed.
Function CanFindNext: boolean;

CanRedo
This method returns true if the control is capable of redoing the last editing operation.
Function CanRedo: boolean;

CopyRichEditFromBlob
This method allows you to copy from a Blob Field to the rich edit control.
Procedure CopyRichEditFromBlob(Field: TField);

CopyRichEditTo
This method allows you to copy the richtext from one rich edit control to another.
Procedure CopyRichEditTo(val: TCustomRichEdit);

CopyRichEditToBlob
This method allows you to copy from a rich edit control to a Blob Field.
Procedure CopyRichEditToBlob(Field: TField);

Execute
Calling this method brings up the pop-up richtext editor. A return value of True is returned if
the user saved their changes.
Function Execute: boolean;

ExecuteFindDialog
Calling this method brings up the Find Dialog, where the end-user can search for text in the
richedit control.
Procedure ExecuteFindDialog; virtual;

ExecuteReplaceDialog
Calling this method brings up the Find Dialog, where the end-user can search and replace text
in the richedit control.
Procedure ExecuteReplaceDialog; virtual;

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 201

ExecuteFontDialog
Calling this method brings up the Windows Font Dialog
Procedure ExecuteFontDialog; virtual;

ExecuteParagraphDialog
Calling this method brings up the paragraph dialog, where the end-user can assign paragraph
indentation properties.
function ExecuteParagraphDialog: boolean; virtual;

ExecuteTabDialog
Calling this method brings up the tab dialog, where the end-user can set tab stops.
Procedure ExecuteTabDialog; virtual;

FindNextMatch
Calling this method repeats the last search performed by the FindDialog
Procedure FindNextMatch; virtual;

FindReplace
Calling this method repeats the last replace performed by the ReplaceDialog
Procedure FindReplace; virtual;

FindReplaceText
Calling this method searches for the string defined by SearchText and replaces it with
ReplaceText. The function returns true if a match was found. SearchTypes is a set of
TSearchType = (stWholeWord, stMatchCase). The search begins from the current cursor
position. If you wish to ensure that the search starts from the beginning of the text, then set the
SelStart property to 0.

Function FindReplaceText(SearchText, ReplaceText: string;
 SearchTypes: TSearchTypes): boolean; virtual;

Example: The following code replaces all occurrences of the string '$Company$' with the
string 'Woll2Woll Software'.

wwDBRichEdit2.SelStart:= 0;
while wwDBRichEdit2.FindReplaceText(
 '$Company$', 'Woll2Woll Software', []) do;

GetRTFText
Call this method to get the raw RTF text. This differs from the text property, which returns the
unformatted text of the control.

Export
Call this method to export the richedit’s contents to a file named FileName of the format
defined by Format. File formats supported are determined by the export filters installed on the

202 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

client system. See the \ip4000\demos\richedit\converter.pas file for an example of how to
import and export. Also see the Import method for further documentation.

Procedure Export(Format: string; FileName: string);

Import
Call this method to import from a file named FileName of the format defined by Format into
the richedit contents. File formats supported are determined by the import filters installed on
the client system. See the \ip4000\demos\richedit\converter.pas file for an example of how to
import and export.

Procedure Import(Format: string; FileName: string);

Example: The following code imports from the HTML file test.html into the richedit.
Import('HTML', 'TEST.HTML');

If you wish to integrate importing and exporting with a TOpenDialog and TSaveDialog, you
can use the TwwRTFConverterList to assist you. TwwRTFConverterList is defined in the unit
wwrtfconverter. Again see \ip4000\demos\richedit\converter.pas for practical usage.

constructor Create(import: boolean) When constructing the class, pass true for import
when generating a list of the client’s installed
import filters. Use a False value for import when
constructing a list of export filters.

LibPath: TStringList List containing location of each filter

Description: TStringList List containing descriptions of each filter

FormatClass: TStringList List containing format class of filters. Elements of
this string list can be used as the Format for the
Import and Export methods.

Filters: TStringList List containing names of filters.

FilterList: AnsiString String containing filters. You can use these filters
with the TOpenDialog and TSaveDiualog Filter
properties.

MSWordSpellChecker
Calling this method invokes Microsoft Word to spell check the text. This method requires
Delphi 5 or later versions. See also the properties PopupOptions.rpoPopupMSWordSpellCheck
and EditorOptions.reoShowSpellCheck to allow built-in menus to invoke the spell checker.
Function MSWordSpellChecker: boolean; virtual;

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 203

Print
This method prints the contents of the richedit control. The print job name is defined by the
Caption property. See also the PrintMargins, PrintFooter, and PrintHeader properties.
procedure Print(const Caption: string);

Redo
Calling this method asks the richedit control to redo the last operation undone by a Undo.

SetBullet
Calling this method enables or disables the bullet style of the current paragraph
Procedure SetBullet(val: boolean);

SetBold
Calling this method enables or disables the boldface attribute of the currently selected text.
Procedure SetBold(val: boolean);

SetItalic
Calling this method enables or disables the italic attribute of the currently selected text.
Procedure SetItalic(val: boolean);

SetUnderline
Calling this method enables or disables the underline attribute of the currently selected text.
Procedure SetUnderline(val: boolean);

Undo
Calling this method asks the richedit control to undo the last operation.

How To
Bind the control to a database field
In order to use the rich-edit control with a database field, you will need to attach the control to
a TBlobField. You can create a TBlobfield by editing your table structure with a tool such as
Database Desktop, and then adding a blob field.

Store RichText into a control at design time
You can store rich-edit text into the control at design time, by dbl-clicking the component and
entering your text. This technique is only valid with an unbound control, as bound controls
will retrieve their data from the table field.

204 Chapter 5, InfoPower Component Reference , TwwDBRichEdit, TwwDBRichEditMSWord

Display the pop-up richtext editor without displaying the control
In many cases you may just want to display the pop-up richtext editor without displaying the
control. This can be accomplished by setting the visible property of the control to False, and
then calling its execute method from your button or event.

wwDBRichEdit1.execute;

Change the richedit’s main menu to call your own custom code
The pop-up richtext editor has a menu that can be partially customized through the
EditorOptions property. However your customization options are limited through this
property. For greater flexibility in manipulating the menu, use the OnInitDialog event. You
can attach code in this event to add additional menu choices to the pop-up editor.

The following example will add a new menu group called Tools, and have a menu selection
item of Greeting. When the user clicks on Tools | Greeting, the message “Hello” is displayed.
Also make sure that the menus unit is added to your form’s uses clause so that the compiler
can recognize the TMenuItem component.

procedure TForm1.wwDBRichEdit1InitDialog(Form: TForm);
 var ToolMenuItem: TMenuItem;
 Function AddMenuItem(Owner: TComponent;
 ACaption: string; event: TNotifyEvent): TMenuItem;
 var menuItem: TMenuItem;
 begin
 menuItem:= TMenuItem.create(Owner);
 menuItem.caption:= ACaption;
 menuItem.OnClick:= event;
 result:= menuItem;
 if Owner is TMenu then (Owner as TMenu).items.Add(menuItem)
 else (Owner as TMenuItem).Add(menuItem)
 end;
begin
 ToolMenuItem:= AddMenuItem(Form.Menu, 'Tools', Nil);
 AddMenuItem(ToolMenuItem, 'Greeting', GreetingClick);
end;

In addition to attaching code to the OnInitDialog event, you will also need to declare and
define the code for your menu item events. The following is the code that is executed when
the user selects Tools | Greeting. Note that you would also need to add the declaration of
GreetingClick to your own form.

procedure TForm1.GreetingClick(Sender: TObject);
begin
 showmessage('Hello');
end;

Embed richedit text in the grid
If you want to see a text representation of your richtext in the grid, the steps are as follows.

1. Dbl-click the grid and select your richedit field.

2. Then choose the Edit Control tab page and change the Control Type to RichEdit.

Chapter 5 - InfoPower Component Reference, TwwDBRichEdit, TwwDBRichEditMSWord 205

3. Optional - If you want to allow the end-user to edit the richtext from the grid, then select a
rich-edit control using the Control Name drop-down. The user can then edit the field by
pressing the F2 keystroke or dbl-clicking the grid cell.

Automatically append text when opening the pop-up richtext editor (i.e. add
current date/time)
The following code attached to the OnInitDialog event will add the current timestamp to the
end of the richedit’s contents. You will need to add wwrich to your uses clause if it is not
already there.

procedure TForm1.wwDBRichEdit1InitDialog(Form: TForm);
begin
 with (Form as TwwRichEditForm).RichEdit1 do
 begin
 selStart:= length(text);
 lines.add(datetostr(Now));
 end;
end;

Force word wrapping to adjust to the printer page size instead of the window size
Set the EditWidth property to rewPrinterSize.

206 Chapter 5, InfoPower Component Reference , TwwDBSpinEdit

TwwDBSpinEdit

 TwwDBSpinEdit component gives your end-users the ability to easily and quickly
increment or decrement formatted numeric and date values by clicking the mouse button or by
pressing the up and down cursor arrow keys. You define the data source and field names,
along with minimum, maximum and increment values. This component can also be used in an
unbound manner (without specifying data source or data field values).

The end-user can modify the contents of the TwwDBSpinEdit by clicking on the up and down
icons. Alternatively they can use the UP Arrow and DOWN Arrow keys. On Date, Time, and
DateTime fields the spinedit will highlight the text that is changing while spinning, so the
user will visually see what is changing.

InfoPower adds the ability to spin formatted numeric text so that the user sees a more
meaningful representation of the value. Set the TField.DisplayFormat property of the field
indicated by the DataField property to spin formatted numerics.

Note: See also the TwwDBDateTimePicker component if you wish to edit dates or times.

 Figure 5.15 - The
 TwwDBSpinEdit component

Ancestor
TCustomMaskEdit

 └─TwwDBCustomEdit

Required supporting components
None

Added Properties

EditorEnabled
When False, the user is not able to type into the TwwDBSpinEdit. The user can still change
the value using the Up/Down Arrow keys or by clicking on the spinedit icons.
Data Type: Boolean

Increment
The Increment property is the value that the component increments/decrements when spinning
the value. This property is ignored when using a date field. Date fields will automatically

Chapter 5 - InfoPower Component Reference, TwwDBSpinEdit 207

determine the increment based on the cursor position within the control. For instance if the
cursor is on the Year portion then it will automatically increment/decrement by one year.
Data Type: Double

MinValue
The MinValue property is the minimum value allowed by the component. If you are trying to
set the MinValue of a date field, we recommend you set this property via code to simplify the
translation from a date to a double. If the properties MinValue and MaxValue are both 0, then
the component ignores these limits.
Data Type: Double

Example: The following code sets the MinValue so that you can’t spin to dates less than the
current date.

wwDBSpinEdit1.MinValue := Now;

MaxValue
The MaxValue property is the maximum value allowed by the component. If you are trying to
set the MaxValue of a date field, we recommend you set this property via code to simplify the
translation from a date to a double. If the properties MinValue and MaxValue are both 0, then
the component ignores these limits.
Data Type: Double

Example: The following code sets the MinValue so that you can’t spin to dates greater than
the current date.

wwDBSpinEdit1.MaxValue := Now;

UnboundDataType
When this component is used without a datasource and datafield, you can still force it to spin
as a date or time value by setting this property. This property also determines how the
component will auto-fill when the space key is entered by the end-user.
Data Type: TwwEditDataType
Valid Values:

wwDefault Spin as a numeric
wwEdtDate Spin as a Date
wwEdtTime Spin as a Time
wwEdtDateTime Spin as a date and time

Value
Current value of component.
Data Type: Double

208 Chapter 5, InfoPower Component Reference , TwwDBSpinEdit

Tips
♦ Remember that for a TDateField or a TDateTimeField, the component will

automatically handle the spinning increment based on the current cursor
position within the date.

♦ If you wish to use 4 digit years, then set the Delphi property
ShortDateFormat. For instance the following line of code your main form’s
OnShow event will display years using 4 digits.

procedure TMainDemo.FormShow(Sender: TObject);
begin
 ShortDateFormat:= 'mm/dd/yyyy';
end;

Similarly if you wish to display and edit time fields without seconds, then set
the LongTimeFormat.

LongTimeFormat:= 'h:mm AMPM';

See the Delphi documentation under date/time formatting for more details on
controlling the format of dates and times

Chapter 5 - InfoPower Component Reference, TwwExpandButton 209

TwwExpandButton

 Use a TwwExpandButton to embed an expandable grid or inspector inside a grid.
This allows you to elegantly display master/detail relationships from a single starting grid.
The end-user clicks on the expand button attached to a grid column, and then the detail grid is
displayed. The detail grid has the full functionality of a TwwDBGrid, and can be edited.

You can also associate a TwwDataInspector component with the expand button. This is
convenient for display concatenated fields in the grid, and then allowing the user to edit the
individual fields when he/she clicks on the expand button.

Note: Do not use a TwwExpandButton as a standalone component outside the grid. This
component is specifically designed for embedding in the InfoPower grid. In the future this
control may be expanded, but at this time it only supports being embedded in the TwwDBGrid.

The basic steps to embed a detail grid or inspector are the following.

1. Drop in a TwwExpandButton and set its Grid property to the detail grid or inspector.

2. Create a calculated or lookup field in your dataset. You will later attach your expand
button to this field.

3. Dbl-click the master grid to bring up the Select Fields Dialog, and set the Control
Type property of the newly created calculated or lookup field to custom. Then choose
the TwwExpandButton you previously created as the custom control.

The ExpandButton uses the following rules

♦ See the AutoShrink property to have the detail grid automatically shrink if there are
not enough records to fill the entire detail grid.

♦ If the user enters Ctrl-Right or the <space> key while in the control, the associated
grid is brought into view.

♦ When the user manipulates the appearance of the master grid, the detail grid is
automatically collapsed. For instance if the user advances to the next column in the
master grid, or changes the column order, the detail grid is collapsed.

♦ You can automatically hide the expand/collapse icons by using Options |
AutoHideExpand to True. The icons are hidden if the value of the field is 0 or null
when this property is true.

♦ Set ShowText to true if you wish to display the text of the associated field within the
control.

♦ Set GridIndents to change the indentation of the expanded grid when it appears.

♦ Set Indents to change the indentation of the expand/collapse icons as well as any text
that appears in the control.

210 Chapter 5, InfoPower Component Reference , TwwExpandButton

InfoPower 4000 introduces the ability to associate a panel with the expandbutton. Previously
you were restricted to using a drop-down grid or drop-down inspector from its clickable
expand button. By allowing a panel, your grid’s capabilities and display options are
dramatically improved. See the how-to topics for information on how-to associate a panel to
the control.

Ancestor
TCustomCheckBox

└─TwwCustomCheckBox

└─TwwDBCustomCheckBox

Added Properties

AutoHideExpandButton
You can automatically hide the expand/collapse icons by using Options | AutoHideExpand to
True. The icons are hidden if the value of the field is 0 or null when this property is true.
This property provides a convenient way of informing the user that there are no detail records
for the given expand button. If you also wish to also prevent the drop-down grid from
expanding via the <space> or <Ctrl><Right> keystrokes, then add the following line of code
to your OnBeforeExpand event. The default behavior of the control does not prevent this so
that there is still a way to edit/insert records in the detail grid
Data Type: Boolean

Example:

procedure TMasterDetailGridForm.wwExpandButton1BeforeExpand(Sender:TObject);
begin
 with (Sender as TwwExpandButton).Field do
 if IsNull or (Text='') then abort;

end;

AutoShrink
The design-time height of the detail grid is used as the grid’s size when the grid is expanded.
If AutoShrink property is True, then the expand button will shrink the grid if there are not
enough records to fill the entire grid. You may wish to only use AutoShrink for your terminal
grid (last detail grid without any contained expand buttons), as with non-terminal nodes you
may see some jumpiness as the parent grid tries to ensure that the entire detail grid can fit in
its confined grid area.
Data Type: Boolean

ButtonAlignment
Assign this property to change the location of the expand icons with respect to the text. Note:
Text only appears in the control when ShowText is True. If ButtonAlignment is set to

Chapter 5 - InfoPower Component Reference, TwwExpandButton 211

taLeftJustify, then the icons appear to the left of the text. If ButtonAlignment is set to
taRightJustify, then the icons appear to the right of the text. If ButtonAlignment is set to
taCenter, then the icons appear in the middle. Warning: Set ShowText to false if your
ButtonAlignment is set to taCenter, as otherwise your text and icon will overlap.
Data Type: TAlignment

DataSource
Name of datasource you are filtering or querying
Data Type: TDataSource
Valid Values: Any TDataSource Component

DataField
Name of field whose value is displayed in the control if ShowText is True. Setting this
property will not have any effect, as the grid re-assigns this property to be the name of the field
that the control is attached to.
Data Type: String

Expanded (Runtime only)
Set this property to True at runtime to force the expand button to expand its associated grid so
that it is shown within the parent grid.
Data Type: Boolean

Grid
Assign this property to the grid or inspector you wish to see when the user clicks on the
expand button. The grid is automatically shrunk (when AutoShink is True) if the grid
determines that it can display all the records with a smaller height. You can set this to a
TwwDBGrid, TwwDataInspector, or a TPanel Control.
Data Type: TWinControl

GridIndents
Use GridIndents to change the relative placement of the expanded grid.

X Assign this property to specify the number of pixels to move the expanded
grid to the left (positive value) or right (negative value).

Y Assign this property to specify the number of pixels to move the expanded
grid upward (negative value) or downward (negative value).

Images
Assign this property if you wish to change the expand/collapse icons displayed by the
TwwExpandButton. The first image in the imagelist is used as the expand icon, and the
second image is used as the collapse icon.
Data Type: TImageList

Indents
Use Indents to change the relative placement of expand/collapse icon and the text.

212 Chapter 5, InfoPower Component Reference , TwwExpandButton

ButtonX Assign this property to specify the number of pixels to move the
expand/collapse icon to the left (positive value) or right (negative value).

ButtonY Assign this property to specify the number of pixels to move the
expand/collapse icon upward (negative value) or downward (negative value).

TextX Assign this property to specify the number of pixels to move the text to the
left (positive value) or right (negative value).

TextY Assign this property to specify the number of pixels to move the text upward
(negative value) or downward (negative value).

ShowAsButton
Set to True to paint the expand/collapse icons as buttons. Instead of being displayed with just
the +/- characters, there is a button frame painted around the icons so that they appear more
like buttons.
Data Type: Boolean

ShowFocusRect
Set to False to hide the focus rect that would appear around the text. Note: Text only appears
in the control when ShowText is True.
Data Type: Boolean

ShowText
Set ShowText to true if you wish to show the text of the calculated field in the column. This
value is not editable and is just a visual indicator. For instance if your calculated field
computes the number of detail records, you may wish to display this value in the grid in the
TwwExpandButton column.
Data Type: Boolean

Added Events

OnAfterCollapse
This event is fired after the end-user collapses the expand button, or the detail grid is
automatically collapsed. When the user manipulates the appearance of the master grid, the
detail grid is automatically collapsed. For instance if the user advances to the next column in
the master grid, or changes the column order, the detail grid is collapsed.

OnAfterExpand
This event is fired after the detail grid is expanded.

OnBeforeCollapse
This event is fired immediately before the detail grid is collapsed.

Chapter 5 - InfoPower Component Reference, TwwExpandButton 213

OnBeforeExpand
This event is fired immediately before the detail grid is expanded

How To

Associate a drop-down panel to the ExpandButton
Associating a panel to an TwwExpandButton is similar to associating a grid or inspector.
However in some cases when using a panel, you will need to trap for the vk_tab character to
prevent the focus from moving out of the grid that the expandbutton is on.

214 Chapter 5, InfoPower Component Reference , TwwFilterDialog

TwwFilterDialog

 InfoPower’s TwwFilterDialog is one of the most powerful InfoPower components as it
gives your end-users the ability to visually filter a table or query, or modify the where clause of
an existing SQL statement. Even though the dialog is capable of sophisticated SQL generation,
the dialog is simple to use as it completely hides the filtering and SQL details from the end-
user. All they need to know is what they are looking for. The dialog does the rest for them!

InfoPower includes AND/OR/NULL support on a single field basis, can show nonmatching
records, and has some filter optimizations that allow the filterdialog to take greater advantage
of indexes while performing the filter. In addition, the user can search on calculated linked
fields and lookupfields in the filterdialog. InfoPower also contains support for picture masks
and custom combo boxes.

Figure 5.16 - An example of executing the TwwFilterDialog

Ancestor

TComponent
 └─TwwCustomDialog

When you execute this dialog box, your end-users can specify a search value, or a range, for
any number of fields contained within the table or query referred to by the DataSource
property. They can also select a specific type of data match to be performed within the field,
such as “From beginning of field”, “Anywhere within the field”, and “Exact match”. The user
can also check the Case Sensitive box to have TwwFilterDialog perform a case-sensitive
match.

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 215

The following describes the controls on the dialog.

Fields Displays the list of fields that the user can search on

All | Searched If the All Fields tab page is selected, then the Fields listbox displays
all fields. When set to Searched, the Fields listbox displays only
fields where the user has assigned a search value.

Field Order If Alphabetic Field Order is selected then the Fields listbox is
ordered alphabetically. If Logical is selected then the fields are
displayed in their natural order. If you wish to disable the Field
Order Radio Group then set the Options | fdShowFieldOrder
property for the TwwFilterDialog to False.

View Summary Button Click this button to view a summary of the current search criteria.

New Search Button Click this button to start a brand new search.

By Value Search criteria for currently selected field to be specified by a Field
Value. You can clear the Field Value by clicking on the adjacent
Clear button. Specify a search type of Exact Match to find exact
matches of the Field Value. Specify Partial Match at Beginning
and Partial Match Anywhere to find partial matches of the Field
Value. Enable the Case Sensitive checkbox to consider case when
searching for the Field Value.

By Range Search Criteria for currently selected field to be specified by a
starting and ending range. You can clear the starting and ending
ranges by clicking on the adjacent Clear buttons.

Filtering mechanisms used by the TwwFilterDialog
The TwwFilterDialog’s allows you to filter the dataset using a wide variety of mechanisms.
The filterdialog either uses the dataset’s built-in filtering when its FilterMethod is set to
fdByFilter. When the FilterMethod is set to fdByQueryModify, it will modify the dataset’s
SQL where clause. For more information on this property see the TwwFilterDialog
FilterMethod property.

DataSet’s Native Filtering
The default filter method is fdByFilter. This means the filtering uses the dataset’s Filter
property or its OnFilterRecord event to perform the filter, depending upon the
FilterPropertyOptions | DataSetFilterType property.

The following summarizes the filtering mechanisms when using fdByFilter. These
mechanisms are controlled by the FilterPropertyOptions | DataSetFilterType property

fdUseFilterProp Uses the dataset’s Filter property. The Filter property, although
more limited in functionality, can offer significant performance

216 Chapter 5, InfoPower Component Reference , TwwFilterDialog

benefits when filtering larger datasets. In general this is the fastest
type of filter when using FilterMethod=fdByFilter.

 When set to this value, filtering is not supported on lookupfields,
memofields, and calculated fields. In addition it will not support
wildcard searches unless the back-end supports the ‘like’ operator
(such as ADO to Microsoft Access which supports the Like keyword
in filters).

fdUseOnFilter Uses the OnFilterRecord event of the dataset. Includes support for
lookupfields and memofields. When using ADO or Delphi 5’s
InterBase objects, it additionally supports filters on calculated fields
in your dataset.

fdUseBothFilterTypes Uses both the dataset’s filter property and its OnFilterRecord
events. If your back-end supports both filter types, then this should
give you the best performance and most capabilities.

Special considerations when filtering on datasets in data modules.
The following warning only applies if you are using FilterMethod=fdByFilter, and either
FilterPropertyOptions | DataSetFilterType of fdUseOnFilter or fdUseBothFilterTypes.

Warning – If the dataset you are filtering is in a data module, you must place the
TwwFilterDialog also in the data module, as use of dialog causes the dataset to call a method
defined in the filterdialog. Otherwise your filterdialog can be destroyed while your dataset still
has an active callback filter. If the filterdialog is destroyed before the dataset, the dataset will
be calling random memory and result in runtime access violations.

Special considerations when filtering with Delphi 5’s ADO datasets.
Warning – The ADO callback filtering currently has a bug in Delphi 5 when encountering
EOF and BOF during the filter. This can manifest itself as a run-time error. In addition, there
are also problems when posting a dataset that has been filtered using callback filtering, as the
system can enter an infinite loop. The FilterDialog uses callback filtering under the following
property configuration.
FilterMethod = fdByFilter
FilterOptions.DataSetFilterType = fdUseOnFilter or
fdUseBothFilterTypes

We recommend that you instead use FilterOptions.DataSetFilterType of fdUseFilterProp when
using TADOTable or TADOQuery to avoid these problems.

Borland/Inprise has been notified of these problems, so we expect that you will be able to use
callback filtering in the future once these issues are resolved them.

Remote filtering by modifying the dataset’s SQL property
When the FilterMethod is set to fdByQueryModify, the TwwFilterDialog parses the SQL of the
dataset, and then replaces its where clause based on the user entered criteria. The revised
query is then re-executed so that remote filtering is performed.

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 217

Though functionally very similar to local filtering, the actual mechanism of filtering is not
performed locally, but instead at the back-end. The back-end can then efficiently perform the
search by utilizing available indexes. This filter method also has the advantage of reducing
network traffic since the filtering is performed on the same machine that contains the data.

InfoPower’s FilterDialog is designed to recognize the new ADO and InterBase dataset objects.
However if you are using a 3rd party engine which has different property names or property
types for its dataset, then you may need to use the OnInitTempDataSet event to initialize any
additional properties for your dataset type.

Use the SQLTables property to pre-define which tables the filterdialog should extract its list of
field names from. If this property is uninitialized then the filterdialog will attempt to parse the
SQL to retrieve this information. However the filterdialog’s parsing only handles simple SQL
statements so it may not be useful for your specified SQL. In general you should always set
the SQLTables property so that you will not be tied to the filterdialog’s limited parsing
abilities.

Use the FieldsFetchMethod to determine the logic InfoPower uses to retrieve the field
information. You may wish to set this property to fmUseTFields if you want the FilterDialog
to simply gather its field definitions from the dataset’s field properties. By doing so, the
filterdialog will not need to parse the SQL for its list of tables, nor will it need to query the
database for its list of fields for each table. As a result it may improve the speed of the initial
display of the dialog. Note that the SQLTables property is ignored when FieldsFetchMethod is
set to fmUseTFields.

Added Properties

Caption
This property contains a text value that is displayed in the dialog window’s title bar. The
default value is blank.
Data Type: String

DataSource
Name of datasource you are filtering or querying
Data Type: TDataSource
Valid Values: Any TDataSource Component

DefaultField
Name of field the dialog initially will select. If the user has previously selected some search
criteria, then this property is ignored.
Data Type: String
Valid Values: Valid Field

DefaultFilterBy
The user can filter by specifying a range of values, or filter by a string value. This property
controls which search type the dialog initially defaults to.

218 Chapter 5, InfoPower Component Reference , TwwFilterDialog

Data Type: TwwDefaultFilterBy
Valid Values: fdFilterByRange, fdFilterByValue, fdSmartFilter

fdFilterByValue The dialog defaults to the By Value tab page (search criteria is
defined by a string value).

fdFilterByRange The dialog defaults to the By Range tab page (search criteria is
defined by a upper and/or lower range.

fdSmartFilter The dialog examines the field type of the currently selected field,
and automatically uses the most appropriate search type tab page.
For numerics and dates it uses the By Range tab page, and for other
types it uses the By Value tab page.

DefaultMatchType
Use this property to change the initial selection of the Search Type radio button.
This property defaults to fdMatchStart.
Data Type: TwwDefaultMatchType
Valid Values: fdMatchStart, fdMatchAny, fdMatchExact

DlgHeight
Use this property to change the height (in pixels) of the filter dialog. By increasing the height,
the dialog can display more fields at a time.
Data Type: integer

FieldOperators
Use this property to customize the field operators that are used to specify “and”, “or”, and
“null” type operations.
Data Type: TwwFieldOperators

There are 3 operators that you can use in the FilterDialog:

AndChar Use this property to customize the “and” keyword that will be used in the
FilterDialog. Default is “and”.
Data Type: String

NullChar Use this property to customize the “null” keyword that will be used in the
FilterDialog. Default is “null”.
Data Type: String

OrChar Use this property to customize the “or” keyword that will be used in the
FilterDialog. Default is “or”.
Data Type: String

FieldsFetchMethod
Use the FieldsFetchMethod to determine the logic InfoPower uses to retrieve the field
information. This property is only applicable with FilterMethod =fdByQueryModify. By

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 219

default InfoPower parses the SQL and searches for the tables referenced by the SQL. You can
bypass this parsing by assigning the SQLTables property. After the list of tables is generated,
it queries the database for a list of fields in the table. If this property is set to fmUseTTable
then it uses a temporary TTable component to retrieve the field information. If set to
fmUseTFields then it extracts the field information from the datasource associated with the
filterdialog. Otherwise it creates a copy of the original dataset to gather the field information.
Data Type: TwwFilterFieldsFetchType
Valid Values: fmUseTTable, fmUseSQL, fmUseTFields

fmUseTTable For each table component parsed or defined by the SQLTables property,
the filterdialog uses a TTable component to extract the field information.
If using a non BDE dataset, then the component ignores this setting and
instead uses fmUseSQL.

fmUseSQL Create a copy of the dataset and set its SQL property to gather the field
information.

fmUseTFields You may wish to set this property to fmUseTFields if you want the
FilterDialog to simply gather its field definitions from the dataset’s field
properties. By doing so, the filterdialog will not need to parse the SQL for
its list of tables, nor will it need to query the database for its list of fields
for each table. As a result it may improve the speed of the initial display of
the dialog. Note that the SQLTables property is ignored when
FieldsFetchMethod is set to fmUseTFields.

FilterMethod
Use this property to change the filtering method used to select the records that matches the
user’s criteria. The only valid value for filtering a TwwTable or TwwQBE is the fdByFilter.
When filtering a TwwQuery, you can use either fdByFilter, or fdByQueryModify. This
property defaults to fdByFilter.
Data Type: TwwFilterMethod
Valid Values: fdByFilter, fdByQueryModify

fdByFilter When using local filtering on a Query or QBE, the query is not re-
executed, but simply re-filtered. This means that the back-end does
not need to do any additional processing. If you using this
FilterMethod on a TQuery, you should set your RequestLive property
to False. Local filtering on tables guarantees a live editable view of the
data.

fdByQueryModify Remote filtering is performed by re-executing the SQL in a developer
defined TQuery. The query’s SQL string is modified so that it's where
clause reflects the user specified criteria. See also the section
preceding the FilterDialog’s property reference for further information
on this filtering method.

220 Chapter 5, InfoPower Component Reference , TwwFilterDialog

FilterOptimization
This property has been added to increase the performance of the FilterDialog when operating
against a TwwTable. It will allow the FilterDialog to use no indexes, the active index, or all
indexes while performing the filter. FilterOptimization will only improve performance with
MatchStart or MatchExact, and not with MatchAny.
Data Type: TwwFilterOptimization
Valid Values: fdNone, fdUseAllIndexes, and fdUseActiveIndex

fdNone This is the default.

fdUseAllIndexes This setting allows the component to switch the index of the filtered
field to improve performance. The side effect of this is that the order
of your displayed data will now be in the order of your filtered field.

fdUseActiveIndex This property will allow the TwwFilterDialog to use the currently
active index while filtering. This will only improve performance
when the user searches on the first indexed field.

FilterPropertyOptions
This property defines the filtering mechanism used when FilterMethod=fdByFilter. The sub-
properties LikeSupportsUpperKeyword, LikeWildcardChar, UseBracketsAroundFields, and
UseLikeOperator only apply if the DataSetFilterType is set to fdUseFilterProp or
fdUseBothFilterTypes.
Data Type: TwwFilterPropertyOptions
Valid Values: fdNone, fdUseAllIndexes, and fdUseActiveIndex

DataSetFilterType See the ‘Filtering mechanisms used by the
TwwFilterDialog’ section for a detailed reference of this
property. This section appears in the TwwFilterDialog
component description.
Data Type: TwwDatasetFilterType

LikeSupportsUpperKeyword Set this property to True if your back-end supports the
Upper SQL keyword, and you wish to allow the end-user
to select the case sensitivity of their filters. This property
is only applicable if UseLikeOperator is set to True. This
property defaults to False.

LikeWildcardChar Assign this property to customize the wildcard character
used in the filter. This property defaults to ‘%’. Modify this
property if your back-end uses a different wildcard
character. This property is only applicable if
UseLikeOperator is set to True
Data Type: Character

UseBracketsAroundFields Set this property to determine if the filter expression
generated by the filterdialog should put brackets around the
field names. Generally brackets are required by the back-

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 221

end. However with Delphi 5’s new InterBase data objects,
you will need to set this property to False.

UseLikeOperator Set to True if your database engine supports the Like
operator when specifying a Filter. The TDataSet Filter
property uses a different syntax depending on the back-
end. For instance, ADO using the Microsoft 4.0 Jet OLE
DB provider will support the like keyword in the filter
expression. Thus you should set your
FilterPropertyOptions.UseLikeOperator property to True.
If your back-end or provider does not support the Like
keyword in the filter expression, then set this property to
False. For instance when tied to a TBDEDataSet(i.e.
TTable, TQuery), you should set this property false. You
may need to experiment to see what your back-end
supports. We recommend you first try setting this property
to True, as your capabilities will be greater if your back-
end supports this.

Note: Some back-ends require a different syntax for the TDataSet filter property. If using
Delphi 5’s new InterBase objects, you should change the default property values to the
following:

LikeSupportsUpperKeyword - True
LikeWildCardChar - %
UseBracketsAroundFields - False
UseLikeOperator - True.

If using Delphi 5 ADO data access components, you should set UseLikeOperator to True.

SupportsUpperKeyword - False
LikeWildCardChar - %
UseBracketsAroundFields – True
UseLikeOperator - True

OnFilterPropertyOptions
This property allows you to customize certain behavior of the callback filtering. Callback
filtering is enabled when FilterMethod=fdByFilter, and FilterPropertyOptions |
DataSetFilterType is set to fdUseOnFilter or fdUseBothFilterTypes.

fdClearWhenNoCriteria Set this to false if you wish to prevent the automatic
canceling of the callback filter when the user has entered
no criteria. This can be useful if you are using the
OnAcceptFilterRecord, as when a filter is cancelled the
OnAcceptFilterRecord event will no longer fire. This
property defaults to true.

222 Chapter 5, InfoPower Component Reference , TwwFilterDialog

fdClearWhenCloseDataSet Set this to false if you wish to prevent the clearing of the
filter when the dataset is closed. This property defaults to
true.

Options
Use this property to change what is displayed shown when the dialog box is executed.
Data Type: Set of TwwFilterDialogOption
Valid Values: fdCaseSensitive, fdShowCaseSensitive, fdShowOKCancel,
fdShowViewSummary, fdShowFieldOrder, fdShowValueRangeTab, fdShowNonMatching,
fdHidePartialAnywhere, fdDisableDateTimePicker, and fdSizeable.

fdCaseSensitive Initial value of dialog’s case sensitive checkbox

fdShowCaseSensitive If True, the case sensitive checkbox will be shown in the dialog.

fdShowOKCancel If True, the OK and Cancel buttons are displayed in the dialog

fdShowViewSummary If True, the Show Summary button is shown in the dialog

fdShowFieldOrder If True, then the Field Order radio button is shown in the
dialog

fdShowValueRangeTab If True, then the tab page that allows the user to select either
ByRange or ByValue is shown.

fdShowNonMatching NOT support. When fdShowNonMatching is set to True, then
a checkbox appears in the Filterdialog which will allow the
user to find the information that doesn't fit a particular
condition.

fdHidePartialAnywhere When True, the Partial Match Anywhere Radio Button is
hidden in the dialog. Defaults to False.

fdDisableDateTimePicker When True, the TwwDBDateTimePickers controls are not used
on date/time fields. Defaults to False.

fdSizeable When True, the popup filter dialog will be resizable. Defaults
to False.

QueryFormatDateMode
This property determines how DateTime values get sent to the SQL back end. For instance if
the back-end expects dates to be in the format month,day,year, then set this property to
qfdMonthDayYear. For further customization then these three values provide, use the
OnEncodeDateTime event.

DataType: TwwQueryFormatDateMode
Valid Values: qfdMonthDayYear, qfdDayMonthYear, qfdYearMonthDay

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 223

Rounding
In some instances when local filtering on numeric values, rounding issues can come into play
when doing range filters. To minimize the effect of rounding, you can tell the component to
allow some tolerance between the database field value and the ranges that are being checked.

Note:/ Rounding only affects local callback filtering (FilterMethod=fdByFilter,
FilterPropertyOptions.DataSetFiltertype=fdUseOnFilter). Otherwise these issues are handled
by the database driver. The following sub-properties are available:

Epsilon See the RoundingMethod property for a description of
how this property is used.
Data Type: Double

RoundingMethod If set to fdrmNone, then no rounding is performed. If set
to fdrmFixed, then the epsilon value is subtracted from
the starting range value, and added to the ending range
value. Setting this propert to fdrmRelative currently has
no functionality but is provided for future enhancements.
Data Type: TwwFilterDialogRoundingMethod

SelectedFields
This property determines which fields the user can filter on. The TwwFilterDialog uses this
property to fill in the Fields listbox. When this property is empty, then all fields are selected.

Figure 5.17 -TwwFilterDialog’s Selected Fields property dialog

Click on the Add Fields button to add additional fields to display in the filter dialog. Click on
Remove Fields to remove the selected fields from the filter dialog.

224 Chapter 5, InfoPower Component Reference , TwwFilterDialog

When performing remote filtering a TwwQuery (FilterMethod = fdByQueryModify), the user
may wish to specify search criteria for fields that don’t actually exist in your TQuery field
structure definition. In these cases InfoPower will use the field name as the display label. You
can override these display labels through this property. To modify the display labels for fields
in your field structure definition, use Delphi’s TDataSet Fields Editor, as InfoPower will not
allow you to modify them through this property.
The following is an example of an SQL statement where the field structure definition does not
include any fields in IP4INV.DB. The TwwFilterDialog however will allow the user to search
on these fields when using remote filtering.

SELECT DISTINCT
 IP4CUST."Customer No",
 IP4CUST."Buyer" ,
 IP4CUST."Company Name"
FROM "IP4CUST.DB" IP4CUST , "IP4INV.DB" IP4INV
WHERE (IP4CUST."CUSTOMER NO"=IP4INV."CUSTOMER NO")

Data Type: TStrings
Valid Values: Array of field names.

SortBy
The list of fields can be sorted alphabetically by field name or logically by field order.
If this property is set to fdSortByFieldName, then the dialog initially displays the list of fields
alphabetically. If set to fdSortByFieldNo, then the dialog displays the fields in their logical
order.
Data Type: TwwFilterDialogSort
Valid Values: fdSortByFieldNo, fdSortByFieldName

SQLPropertyName
This property is used when FilterMethod=fdByQueryModify. In order for the filterdialog to
support datasets who define their sql with a different property name, you must set the
SQLPropertyName to the name of this property.

InfoPower extends the filterdialog to support dataset types that do not use the property name
‘SQL’ to define their sql. In addition, the data type of the sql property is no longer required to
be a TStringList. This allows the filterdialog to remotely filter dataset types such as
TADODataSet, TClientDataSet, and other 3rd party dataset types that it did not previously
support. This greatly improves the performance in these situations.

See the how-to topic on Remotely filter a TClientDataSet if you are using a TClientDataSet.
Data Type: String

SQLTables
This property is used when FilterMethod=fdByQueryModify, and FieldsFetchMethod is set to
fmUseTTable or fmUseSQL.

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 225

Use the SQLTables property to pre-define which tables the filterdialog should extract its list of
field names from. If this property is uninitialized then the filterdialog will attempt to parse the
SQL to retrieve this information. However the filterdialog’s parsing only handles simple SQL
statements so it may not be useful for your specified SQL. In general you should always set
the SQLTables property so that you will not be tied to the filterdialog’s limited parsing
abilities.

Data Type: TCollection of TwwSQLTablesCollectionItem. Each collection item contains the
properties TableName and TableAliasName. If TableAliasName is omitted, then it defaults to
the TableName property value.

SQLUpperString
Assign this property to change the sql keyword used to upper case a field value. When this
property is unassigned, the 'UPPER' keyword is used. This property is only relevant if you are
performing case insensitive filtering with the FilterMethod set to fdByQueryModify. Do not
change this value unless you are certain that your back-end supports a different sql keyword
for uppercase.

UpperRangePadChar
When searching using the ByRange tab on a string field, the upper range field needs to be
padded with the highest valid Ascii character internally. So example with this property set to
it’s default of 122, then if the end-user searches from A to C it will filter on the range from A
to Czzzzzz so that all strings that start with A or C are found. You should not normally need
to modify this value.

Required property assignments
DataSource

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwfltdlg.pas in
the InfoPower source sub-directory. If you do not have the source code version of InfoPower,
then perform the steps in Chapter 4's topic "Determining the object names of the controls
contained in an InfoPower dialog" on the wwfltdlg.dfm file contained in the InfoPower lib
directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | FilterDialog property.

226 Chapter 5, InfoPower Component Reference , TwwFilterDialog

OnAcceptFilterRecord
This event is fired when using FilterMethod=fdByFilter, and either FilterPropertyOptions |
DataSetFilterType of fdUseOnFilter or fdUseBothFilterTypes. See also the notes in the
filterdialog’s component description for further note on ADO dataset filtering.

You can use this event for your own needs if you wish to have additional callback filtering
performed before the filterdialog’s default callback filtering.

Sender: TObject TwwFilterDialog associated with this event.

DataSet: TDataSet Dataset that is being filtered

var Accept: boolean Set to false to reject the current record from being filtered.
The filterdialog will not evaluate the record. If you set this
property to true and wish for the filterdialog to do no
additional examination of the record, then also set the
DefaultFiltering property to False.

var DefaultFiltering: boolean If you wish for the filterdialog to do no additional
examination of the record, then set the DefaultFiltering
property to false.

OnDialogSummary
This event is fired when the end-user clicks on the View Summary Button in the dialog. Use
this event to display your own summary dialog based on the information in the AFieldInfo list.

Sender: TObject TwwFilterDialog associated with this event.

AFieldInfo: TList TList of TwwFieldInfo. This list defines the current filter
criteria.

var DoDefault: boolean Set to False when displaying your own custom dialog.

OnEncodeDateTime
This event allows you to change the format of the date within the SQL. InfoPower defaults to
formatting based on the QueryFormatDateMode property. If you require further customization
of the format for your back-end, then use this event to set the FormattedDateStr parameter.

OnEncodeValue
This event allows you to change how the value is formatted when the SQL is being generated.

OnExecuteSQL
This method is maintained for backwards compatibility. Use the dataset’s BeforeOpen event
for new applications.

When using FilterMethod = fdByQueryModify, this event is fired before the query is executed.
Use this event if you wish to customize the query in some way, such as adding an OrderBy
clause. This event only applies if your filterdialog is filtering a TQuery.

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 227

Tip: If you wish to view the SQL that was generated (for Debug reasons), then you can put the
following code in this event to view the actual SQL string that is generated before it is actually
executed.

procedure TForm1.wwFilterDialog1ExecuteSQL(Dialog: TwwFilterDlg;
 Query: TQuery);
 var i:integer;
begin
 for i:=0 to Query.SQL.Count-1 do
 ShowMessage('Line #' + IntToStr(i+1) + ': ' + Query.SQL.Strings[i]);
end;

OnInitDialog
Allows you to customize the filter dialog box or perform some action during the initialization
of the dialog box. For basic customization of the labels and hints, use the TwwIntl component.
For all other customization, use this event. This event is fired after the dialog box is created,
but before it’s displayed on the screen. This gives you access to all the components in the
dialog, allowing you to completely customize every aspect of the dialog during program
execution. When using this event, your code must reference wwfltdlg in your source file’s Uses
clause. For example, you can modify the control’s properties, define custom events, etc.

Example: The following code disables the hint on the user-defined button.
procedure TForm1.wwFilterDialog1InitDialog(Dialog: TwwFilterDlg);
begin
 Dialog.ViewButton.ShowHint := False;
end;

OnInitTempDataSet
This event is only fired when FilterMethod=fdByQueryModify, and FieldsFetchMethod is set
to fmUseSQL. When you call the execute method of the filterdialog,, it creates a temporary
dataset and then calls the GetFieldNames method for this temporary dataset. However this
temporary dataset may need additional properties set, depending upon if you are using any 3rd
party database engines. If you are, then set the properties of the temporary dataset in this
event.

Sender: TObject TwwFilterDialog associated with this event.

OrigDataSet: TDataSet Dataset that is being filtered

TempDataSet: TDataSet Temporary dataset created to retrieve the list of fields

OnSelectField
This event allows you to define custom combo-boxes or picture masks within the end-user
filtering dialog. The combo-boxes are used when the user is doing an Exact or a Partial
Match at Beginning search.

Sender: TObject Actual dialog that is retrieving the user input. You can cast
this to a TwwFilterDlg to access all of the controls in this
dialog. If you cast it then be sure to add wwfltdlg to your

228 Chapter 5, InfoPower Component Reference , TwwFilterDialog

form’s uses clause. See the OnInitDialog for the names of all
the components on this dialog.

FieldName: string Name of the new field being selected

PictureMask: string Set this to the picture mask you want to use for the new field.

ComboList: TStringList Add entries to this TStringList to define a custom combobox
for the field.

Example: The following code defines a combo-box list for the ‘Buyer’ field of the
FilterDialog. When the user selects this field doing a value search , a combo-box will appear
that has the values “Yes”, and “No” in the drop-down list.

procedure TFilterDialogForm.wwFilterDialog1SelectField(Sender: TObject;
 FieldName: String; var PictureMask: String; ComboList: TStrings);
begin
 if FieldName = 'Buyer' then begin
 ComboList.Add('Yes');
 ComboList.Add('No');
 end
end;

Example: The following code defines a mapped combo-box list, which allows the select from
a list of descriptive strings and the filter will automatically filter on the database field value.
For instance, consider the case where your database field allowed for 3 possible integer values
(0,1,2), and the represented the strings ‘Visa’, ‘MasterCard’, ‘American Express’. You can
use the following code to allow the user to select from the more meaningful descriptive text,
but still filter based on the integer value.

procedure TFilterDialogForm.wwFilterDialog1SelectField(Sender: TObject;
 FieldName: String; var PictureMask: String; ComboList: TStrings);
 var FilterCombo: TwwDBComboBox;
begin
 if (FieldName = 'Buyer') then begin
 FilterCombo:= TwwFilterDialog(Sender).Form.FilterValueCombo;
 FilterCombo.MapList:= True;
 ComboList.Add('Visa' + #9 + '0');
 ComboList.Add('MasterCard' + #9 + '1');
 ComboList.Add('American Express' + #9 + '2');
 end
end;

Added Methods

AddFieldInfo
Use this method if you wish to add filter conditions to the FilterDialog using code. This
method creates and returns a TwwFieldInfo data type, which is automatically added to the
internal FieldInfo list. See the example under the ApplyFilter method.

TwwFieldInfo = class
 public
 FieldName: string;
 DisplayLabel: string;
 MatchType: TwwFilterMatchType;
 FilterValue: string;

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 229

 MinValue: string;
 MaxValue: string;
 CaseSensitive: boolean;
 NonMatching: boolean;
 end;

TwwFilterMatchType = (fdMatchStart, fdMatchAny, fdMatchExact,
 fdMatchRange, fdMatchNone);

ApplyFilter
Use this method to apply the filter based on changes that have been made to the FieldInfo
criteria of the TwwFilterDialog. See the form savefilt.pas and the unit wwsavflt.pas in the
main demonstration program for a complete example of applying filters at runtime without the
filter dialog appearing.

Example: This example demonstrates how to change the filter criteria of a TwwFilterDialog at
runtime with code.

procedure TFilterDialogForm.Button1Click(Sender: TObject);
begin
 with wwFilterDialog1 do begin
 ClearFilter;
 with AddFieldInfo do begin
 FieldName:= 'Last Name';
 Displaylabel:= 'Last Name';
 MatchType:= fdMatchStart;
 FilterValue:= 'R';
 MinValue:= '';
 MaxValue:= '';
 CaseSensitive:= False;
 end;
 ApplyFilter;
 end;
end;

ClearFilter
Use this method to clear the filter currently used in the TwwFilterDialog. Remember to use
the ApplyFilter method to actually make the changes.

Execute
Display the Visual filtering dialog box to the end-user.

ExecuteDialog
A more flexible version of the TwwFilterDialog Execute method when using
FilterMethod=fdByQueryModify. If using FilterMethod=fdByFilter, then it the parameters are
ignored.
Function ExecuteDialog(ExecuteQuery: boolean = True;

 ReturnWhereClause: TStrings = nil): boolean;

ExecuteQuery When false, the query associated with the filterdialog is not re-

executed.

230 Chapter 5, InfoPower Component Reference , TwwFilterDialog

ReturnWhereClause Assign this parameter if you wish to retrieve the where clause that
the filter dialog has computed based on the user’s entered criteria.

How To

Remotely filter a TClientDataSet
The following are the steps required to remotely filter a clientdataset so that filter is performed
on the server and not locally.

1. Set the following properties for the filterdialog

FilterMethod = fdByQueryModify
FieldsFetchMethod = fmUseTFields
SQLPropertyName = CommandText

2. Set your TClientDataSet so that the CommandText property is set to query the table,

such as…

Select * from Employee

3. Set your provider’s Options property so that poAllowCommandText to True. This
allows the TClientDataSet to modify the provider’s SQL with its CommandText
property.

Add a Custom Combobox to the FilterDialog
See the documentation and examples under the OnSelectField event.

Invoke the FilterDialog
Call the Execute method to bring up the filter dialog.

wwFilterDialog1.Execute;

Use the TwwSearchDialog with the wwFilterDialog
When using the FilterDialog on a table, you may wish to apply this same filter to another
table. For instance this would be useful when using the SearchDialog with the optional
ShadowSearchTable, as it would maintain consistency between the search dialog's view and
the calling form's view. The following shows you how you can apply the filterdialog's filter to
the ShadowSearchTable of the SearchDialog.

1. Add a new TwwFilterDialog component to your form and set the following properties

DataSource = CustomerTableDS
Name = CustomerFilterDlg
FilterMethod = fdByFilter

2. Add a new TButton component to your form and attach code to its OnClick event:
Procedure TFilterDialogForm.BitBtn1Click(Sender: TObject)
begin

Chapter 5 - InfoPower Component Reference, TwwFilterDialog 231

 CustomerFilterDlg.Execute;
 CustomerShadowTable.OnFilter := CustomerTable.OnFilter;
end;

Loading and saving filters
See the InfoPower demo for an example on how to load and save filters using the
wwFilterDialog.

Expanding the height of the dialog
Increase the value of the DlgHeight property

Determine if the user selected any search criteria
If the FieldInfo.Count property is greater than 0, then the user has selected a search criteria.

End-user Resizing of FilterDialog
Set Options | fdSizeable to True.

Caution

Make sure that your field display labels are unique. InfoPower’s FilterDialog uses the field
titles to fill the fields listbox. If there are duplicates, the user’s filtering specification becomes
ambiguous and may not function as expected.

232 Chapter 5, InfoPower Component Reference , TwwIncrementalSearch

TwwIncrementalSearch

 TwwIncrementalSearch is a visual interface component that provides your end-users
with a means to incrementally search for values. As the end-user enters characters into the
edit box, the component performs a search operation based on the characters currently in the
edit box, moving to the record that contains the closest match

When searching against a Table, the component automatically uses the index to enhance
performance. See the TwwTable property NarrowSearch and SyncSQLByRange to further
customize how InfoPower performs incremental searching on a Table.

When searching against a Query or QBE result, the component performs a sequential search
on the field defined by the SearchField property. The search is always case insensitive against
a query or QBE.

 Figure 5.18 - An active
 TwwIncrementalSearch
 component looks just
 like a normal edit box.

Ancestor
TCustomEdit.

Required supporting components
TDataSource

Added properties

DataSource
This property contains the name of a TDataSource component that the search should be
applied to. The default value is blank.
Data Type: TDataSource
Valid Values: Valid DataSource component name

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for
information on this property.
Data Type: TwwEditFrame

Chapter 5 - InfoPower Component Reference, TwwIncrementalSearch 233

PictureMask
This property allows you to enter a picture mask to validate and convert the entered text to the
desired format. For instance you can set the picture mask to “&*?” and the control will only
allow letters to be entered, and will automatically capitalize the first letter. Please reference
chapter 4, Selecting a Picture Mask for details on this property.

Note: If you wish for the control to automatically use the picture mask already defined for the
database field, then leave this property blank, and set the PictureMaskFromField property to
True.

Data Type: String
Valid Values: Valid picture mask string

PictureMaskAutoFill
When you enter a picture mask that consists of auto-fill characters, setting this property to
True will activate the auto-fill capabilities of the picture mask. When False, all auto-fill
capabilities of the picture masks defined for the field are deactivated.
Data Type: Boolean

PictureMaskFromField
Setting this property to True will allow the control to automatically use the picture mask
defined for the database field. The TwwIncrementalSearch’s PictureMask property must also
be set to blank for this property to have an effect, as the component’s PictureMask property
has precedence.
Data Type: Boolean

ShowMatchText
Set this property to True if you want the incremental search component to display the
matching field’s value directly in this control. By default this property is False.
Data Type: Boolean

SearchDelay
TwwIncrementalSearch supports a search delay for its incremental searching. This property
controls how many milliseconds to wait before beginning the search for the user’s entered text.
The purpose of this property is to reduce the number of searches that are performed as the user
enters characters. Setting this to a larger value may improve your performance as fewer
searches will need to be performed. Setting this to a smaller value will cause the search to
begin more quickly. This property defaults to 0, which tells the control to determine the best
delay. Currently 200 milliseconds is used by the control for the delay.
Data Type: Integer

SearchField
In some cases the search component is not able to determine the correct field that it should
search on. This can occur when using dBASE expression indexes, or if you are using a multi-
field index and you may want to search on the 2nd or 3rd field instead of the default 1st field.

234 Chapter 5, InfoPower Component Reference , TwwIncrementalSearch

Ambiguity can also occur if you are incrementally searching a dataset that has no indexes,
such as a TwwQuery, TwwQBE, or a TwwClientDataSet.
(See TwwDBLookupCombo for an example of how to use this property.)
Data Type: String
Valid Values: Valid field name

Modified properties

Text
No longer published, but is now a runtime only property. You can still use this property in
your code.

Required property assignments
DataSource, SearchField (if no index is active, or you are using an xBASE expression index).

Added Events

OnAfterSearch
This event is executed after the incremental search has repositioned the table according to the
user’s entered text.

Added Methods

Clear
Clear the incremental search component back to blank.

FindValue
Call this method if you wish to force the incremental search component to use the current text
value and perform the search. The component automatically performs incremental searching
when the end-users types in text, but if you explicitly set the text value the search is not
performed.

Tips
♦ This component is especially useful when combined with the TwwKeyCombo

component, which allows end-users to select the active table index.
♦ If you have a choice, use case insensitive indexes in your tables to make

incremental searching more user-friendly. If you do not have a choice use
picture masks to automatically convert the input to the proper case.

Chapter 5 - InfoPower Component Reference, TwwIntl 235

TwwIntl

 The TwwIntl component is a non-visual component that provides you with a
centralized way of changing the attributes of InfoPower’s end-user dialog boxes. You can
control the captions, hints, and even the style of buttons to use. This component will greatly
assist those internationalizing their application into other languages.

Ancestor
TComponent.

Required supporting components
None.

Added Properties

ADO
With ADO Datasets when locating on partial match or exact match searches the locate method
is much faster. So setting UseLocateWhenFindingValue to true will result in performance
enhancements for search type operations in InfoPower components.

BtnCancelCaption
Caption to use in Cancel buttons

BtnOKCaption
Caption to use in OK buttons

CheckBoxInGridStyle
Use this property to choose the style of the checkboxes that appear in all the grids.
Data Type: TwwCheckBoxInGridStyle
Valid Values: cbStyleAuto, cbStyleCheckmark, or cbStyleXmark

cbStyleAuto Style of checkbox is dependent on operating system.

cbStyleCheckmark Checkmark style of checkbox.

cbStyleXmark X style of checkbox.

Connected
Toggle this property to True to activate this component’s properties so that they are used by
the InfoPower dialogs.
Data Type: Boolean

236 Chapter 5, InfoPower Component Reference , TwwIntl

DefaultEpochYear
This property defines the default epoch date when creating new TwwDateTimePicker controls.
The property is used to determine how 2 digit years resolve to 4 digit years. This property
defaults to 1950, which will translate 2 digit years (xx) less than 50 to 20xx’, and years greater
than 50 to 19xx.
Date Type: integer
Valid Values: Valid year greater than 1900

DialogFontStyle
Use this property to choose the style of the fonts that appear in InfoPower’s dialogs. If you
need to change any other attributes of a given dialog’s Font, then use the corresponding
dialog’s OnInitDialog event.
Data Type: TFontStyles
Valid Values: fsBold, fsItalic, fsUnderline, or fsStrikeOut

fsBold Font style of bold.

fsItalic Font style of italics.

fsUnderline Font style of underline.

fsStrikeOut Font style of strikeout.

FilterDialog
Captions and Hints for the TwwFilterDialog component

FilterMemoSize
This property defines the number of bytes to allocate for temporary data storage when
performing callback filtering. This property is only relevant if using TwwTable, TwwQuery, or
TwwStoredProc.
Data Type: Integer

IniFileName
This property defines the value use when a grid’s IniAttributes | FileName property is blank.
This property is ignored if the IniAttributes | FileName property is already assigned for the
grid control. If IniFileName is also blank, the grid will compute the FileName based on the
application’s executable name.
Data Type: String

LocateDialog
Captions and Hints for the TwwLocateDialog component

MonthCalendar
Captions and Dialog messages for the TwwDBMonthCalendar

Chapter 5 - InfoPower Component Reference, TwwIntl 237

Navigator
Captions and Hints for the TwwDBNavigator

OKCancelBitmapped
True if the OK and Cancel buttons use a bitmap
Data Type: Boolean

RegistrationNo
Displays your registration number.

RichEdit
Captions, Menu items, and Hints for the TwwDBRichEdit component.

SearchDialog
Captions and Hints for the TwwSearchDialog, TwwLookupDialog, and
TwwDBLookupComboDlg components

UseLocateMethodForSearch
Setting this property to False, will make the component use the FindNearest method instead of
the Locate method when incremental searching on tables. Because Delphi recommends using
the Locate method over the FindNearest method, we recommend leaving this property True.

UserMessages
User messages generated by InfoPower

VersionInfoPower
Displays the current version of InfoPower

Required property assignments
None

Added Events

OnPerformCustomSearch
When using a large search table from a remote server, the performance of the incremental
searching can significantly degrade. To resolve this issue, InfoPower adds a new event where
you can control the specific action that takes place after the user types a character. In
particular the custom action can update the query to only return the records that you are
interested in. When using this event, your code is responsible for manipulating the
lookuptable based on the parameter values passed in. See the TwwDBLookupCombo
OnPerformCustomSearch event for a description of the events parameters.

238 Chapter 5, InfoPower Component Reference , TwwIntl

OnValidationErrorUsingMask
Write an OnValidationErrorUsingMask event handler to perform any custom action after the
user tries to leave a cell or edit control with a value that does not satisfy the picture mask
constraints assigned for the cell. The default behavior is to raise an exception with the
message “Invalid input value. Use escape key to abandon changes”.

Parameter Description
Sender:TObject The TwwDataInspector associated with this event.
Field:TField TwwInspectorItem whose edited value does not satisfy the

picture mask constraints.
Msg:String You can set this value to change the actual message used by the

default error handler.
var DoDefault:Boolean Set this to False to prevent the default handler from executing.

The default error handler raises an exception with the message
defined by Msg.

Here is an example of code attached to the TwwIntl | OnValidationErrorUsingMask event.
Note that you will need to also set the TwwIntl Connected property to true, and place this
component in your main form.

procedure TForm1.wwIntl1ValidationErrorUsingMask(Sender: TObject;
 Field: TField; var Msg: String; var DoDefault: Boolean);
begin
 Msg:= 'Invalid input for field ' + Field.fieldname;
 DoDefault:=True;
end;

How To

Modify the labels and hints in an InfoPower dialog
Customizing the dialog labels and hints is accomplished via the following steps:
1. Drop an InfoPower TwwIntl component on your main form
2. Modify the properties you wish to change.
3. Set the component’s Connect property to True.

Chapter 5 - InfoPower Component Reference, TwwKeyCombo 239

TwwKeyCombo

 TwwKeyCombo is a visual interface component that provides your end-users with an
easy means of changing the current display order of data being retrieved from an indexed
table. When the user selects the TwwKeyCombo component, it’s drop-down selection list is
populated with the DisplayNames of all indexes available for the table it’s assigned to. Index
fields that are not selected for display in the target visual interface component are not shown in
the selection list. When the user selects one of the available table indexes, the table’s access
path index is changed to the user-selected index.

If there is more than one index that corresponds to a given field, this component places a
priority on using a case insensitive index.

 Figure 5.19 - The visual interface portion
 of a live TwwKeyCombo component with
 the drop-down list activated.

Ancestor
TwwDBCustomComboBox.

Required supporting components
TDataSource.

Added Properties

ButtonEffects
See the topic “Key properties for enabling custom button effects in the edit controls” in chapter
4 for information on this property.
Data Type: TwwButtonEffects

ButtonGlyph, ButtonStyle, ButtonWidth
See the TwwDBComboDlg component for a description of these properties.

DataSource
This property contains the name of a TDataSource component that is to be used for the
acquisition of data. The default value is blank.
Data Type: TDataSource
Valid Values: Valid DataSource component name

240 Chapter 5, InfoPower Component Reference , TwwKeyCombo

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for
information on this property.
Data Type: TwwEditFrame

PrimaryKeyName
Used only when ShowAllIndexes is True. This property contains the text that is displayed for
the primary index name. The default value is “PrimaryKey”.
Data Type: String

ShowAllIndexes
When True, all indexes are included in the list, and the index names are used instead of the
field names. The default value is False.
Data Type: Boolean

Modified properties
None.

Required property assignments
DataSource.

Added Events
None.

Added methods

InitCombo
Refreshes wwKeyCombo to reflect the table’s current settings.

Tips
♦ If you have a choice use case insensitive indexes in your tables to make

incremental searching more user-friendly.
♦ To display the drop-down list via keyboard, press the Alt+down cursor

arrow keys when the component has focus.

Chapter 5 - InfoPower Component Reference, TwwLocateDialog 241

TwwLocateDialog

 The TwwLocateDialog component itself is non-visual but when executed it provides
your end-users with a dialog box that allows them to search for a value within any field,
including Memo fields. You specify the default values for case sensitivity (True or False),
match type (exact, match any or match starting characters), search field name and the order in
which the fields are sorted in the drop-down selection list (by field name or field number).
Each of these options are also end-user selectable, except for the field list sort order.

The built-in FindFirst and FindNext methods can be executed under program control without
displaying the dialog box. This lets the developer assign any end-user keyboard key, button or
icon to these methods, allowing the user to repeat the last locate command or start over from
the beginning of the table without having to re-display the dialog box or re-enter their search
criteria.

 Figure 5.20 - The TwwLocateDialog
 in action.

Ancestor
TComponent
 └─TwwCustomDialog

Required supporting components
TDataSource

242 Chapter 5, InfoPower Component Reference , TwwLocateDialog

Added Properties

Caption
This property contains a text value that is displayed in the dialog box title bar. The default
value is “Locate Field Value”.
Data Type: String

CaseSensitive
This property defines whether or not the search is to be case sensitive. If the user changes this
value, the new value is used the next time the dialog box is displayed. The default value is
False.
Data Type: Boolean

DataSource
This property contains the name of a TDataSource component that provides the table name to
be searched. The default value is blank.
Data Type: TDataSource

DefaultButton
This property controls which button is the default button when the dialog appears. The default
value is dbFindNext.
Data Type: Constant
Valid Values: dbFindFirst or dbFindNext

FieldSelection
This property determines which fields are used to fill the available field list. When set to
fsAllFields, all fields, excluding non-searchable fields such as Graphic, Blob, etc. are used.
When set to fsVisibleFields then only fields whose visible property is True are used. The
default value is fsAllFields.
Data Type: Constant
Valid Values: fsAllFields or fsVisibleFields

FieldValue
This is a run-time only property. This property allows you to set the search value that the
FindFirst and FindNext methods use. Thus, you can completely bypass the InfoPower locate
dialog when performing a locate field value. The default value is an empty string.

Example: The following example finds the next occurrence of 'Port' in the 'City' field. The
match can be contained in any part of the 'City' field's value.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with wwLocateDialog1 do begin
 SearchField := 'City';
 FieldValue := 'Port';
 MatchType := mtPartialMatchAny;
 FindNext;
 end;

Chapter 5 - InfoPower Component Reference, TwwLocateDialog 243

end;

MatchType
This property contains a constant value that defines the type of match to be used. This value is
used the first time the dialog box is displayed. If the user changes this value, the new value is
used the next time the dialog box is displayed. The default value is mtPartialMatchStart.
Data Type: Constant
Valid Values: mtExactMatch, mtPartialMatchAny, mtPartialMatchStart

Options
Use this property for further customizations of appearance and behavior when the dialog box is
executed.
Data Type: Set of TwwLocateDlgOption
Valid Values: ldoCaseSensitiveBelow, ldoCloseOnMatch

ldoCaseSensitiveBelow When True the CaseSensitive checkbox will appear below the
match type radio buttons. Otherwise it will appear above.

ldoCloseOnMatch If False, the dialog will remain open when a match is found.
Default is True, in which case the dialog will close as soon as a
match is found.

SearchField
This property contains the name of the table’s field to be searched against. If the user changes
this value, the new value is used the next time the dialog box is displayed. The default value is
blank—no SearchField specified.
Data Type: String
Valid Values: Existing field name in the table being searched.

ShowMessages
When True, informational messages, such as "No more matches found", are displayed to the
user if the locate does not find a match. To disable messages, set this property to False. The
default value is True.
Data Type: Boolean

SortFields
This property determines the sort order of the field names that appear in the drop-down field
name list. The default is fsSortByFieldName.
Data Type: Constant
Valid Values: fsSortByFieldName and fsSortByFieldNo

Tag
This is the standard Delphi Tag property that you can use for your own internal processing
needs. The default value is 0.
Data Type: Long

244 Chapter 5, InfoPower Component Reference , TwwLocateDialog

UseLocateMethod
This property is for ADO DataSet performance optimization when locating on a field that is
not the active index or the index’s case-sensitivity does not match the end-users selections in
the dialog. If this is the case, then you can set this property to True so that the ADO
Datasets’s Locate method is called in partial match or exact match searches.
Data Type: Boolean

Modified properties
None.

Required property assignments
DataSource.

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwlocate.pas in
the InfoPower source sub-directory. If you do not have the source code version of InfoPower,
then perform the steps in Chapter 4's topic "Determining the object names of the controls
contained in an InfoPower dialog" on the wwlocate.dfm file contained in the InfoPower lib
directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | LocateDialog property.

OnInitDialog
Allows you to completely customize every aspect of the dialog box or perform some action
during the initialization of the dialog box. For example, you can modify the grid's properties,
define custom events, etc.

Note: See the OnInitDialog event for TwwLookupDialog or the How To section of the
TwwMemoDialog for an example on how to use this event.

Added Methods

Execute
Display the Locate Field Value dialog box to the end user. The dialog box remains displayed
until either a First or Next match is found, the user clicks the Cancel button or the user closes
the dialog box via the control menu. False is returned when the user clicks Cancel or closes the
dialog box. If a First or Next match is found, the dialog box closes and True is returned.

Chapter 5 - InfoPower Component Reference, TwwLocateDialog 245

Example: If your TwwLocateDialog component’s Name is wwLocateDialog1, you could attach
the following code to a button on your form with a Caption of “Locate” to demonstrate when
True and False are returned after displaying the Locate dialog box...

if wwLocateDialog1.execute then
 MessageDlg('(True) A match was found. Dialog now closed.',
 mtInformation, [mbOk], 0)
else
 MessageDlg('(False) User clicked Cancel '
 + 'or closed the dialog box.',
 mtInformation, [mbOk], 0);

FindFirst
Simulates the user clicking the First button of the dialog box. Searches the selected field in the
associated table, from the top of the table, for the first occurrence of the Field Value previously
entered by the user. The dialog box is displayed only if the Field Value is blank. Returns True
if the Field Value was located, or False if it was not.

Example: If your TwwLocateDialog component’s Name is wwLocateDialog1, you could
attach the following code to a button on your form with a Caption of “First” to demonstrate
when True and False are returned after executing the FindFirst method...

if wwLocateDialog1.FindFirst then
 MessageDlg('(True) Located first match.', mtInformation, [mbOk], 0)
else
 MessageDlg('(False) No match found.', mtInformation, [mbOk], 0);

FindNext
Simulates the user clicking the Next button of the dialog box. Searches the selected field in the
associated table, from the current record location, for the next occurrence of the Field Value
previously entered by the user. The dialog box is displayed only if the Field Value is blank.
Returns True if a next match was found, or False if another match was not found.

Example: If your TwwLocateDialog component’s Name is wwLocateDialog1, you could
attach the following code to a button on your form with a Caption of “Next” to demonstrate
when True and False are returned after executing the FindNext method...

if wwLocateDialog1.FindNext then
 MessageDlg('(True) Located next match.', mtInformation, [mbOk], 0)
else
 MessageDlg('(False) No more matches found.', mtInformation, [mbOk], 0);

How To
Refer to the sample application in the \ip3000\demos\locate directory to see an example of
using the TwwLocateDialog component. This sample application also shows how to make the
dialog box set the default search field based on the currently active database field.

Tips
♦ To set the SearchField to the field that currently has input focus, add code to

accomplish this just before the Execute method in your program.

246 Chapter 5, InfoPower Component Reference , TwwLookupDialog

TwwLookupDialog

 InfoPower’s non-visual TwwLookupDialog component is similar to
TwwDBLookupComboDlg but does not include the visual interface portion of the component.
This component, which is not bound to any other visual interface component, displays a dialog
box (as described in TwwDBLookupComboDlg) to the user whenever you execute it from
within your code. This gives you complete control and flexibility over not only how the lookup
dialog box is displayed and what it contains, but also when it’s displayed. You can enable up to
two optional developer-controlled buttons in this dialog box and define what actions take place
when the user clicks on either button.

Ancestor

TComponent
 └─TwwCustomDialog
 └─TwwCustomLookupDialog

Required supporting components
None.

Added Properties

Caption
This property contains a text value that is displayed in the dialog box’s title bar. The default
value is “Lookup”.
Data Type: String

CharCase
This property defines what case the characters typed in by the user are to take. ecLowerCase
converts all characters to lower case. ecNormal allows the user to type both upper and lower
case characters. ecUpperCase converts all characters to upper case. The default value is
ecNormal.
Data Type: Constant
Valid Values: ecLowerCase, ecNormal, ecUpperCase

GridColor
This property defines the background color of the grid. The default value is clWhite. (When
the first column of a grid is fixed, it’s colors are the same colors used for the grid’s column
titles as defined by the TitleColor property.)
Data Type: Constant
Valid Values: Valid Delphi color.

Chapter 5 - InfoPower Component Reference, TwwLookupDialog 247

GridOptions
This property contains a set of standard Delphi grid options.
Data Type: TSet()
Valid Values: Valid Delphi grid options

GridTitleAlignment
Determines the text alignment of titles in popup-dialog's grid. The default value is
taLeftJustify.
Data Type: Constant
Valid Values: taCenter, taLeftJustify or taRightJustify

LookupTable
This property defines the TDataSet component to be used for performing the lookup. The
default value is blank. This property must be assigned. In order for the dialog to display the
search-by combo, the dataset must have its IndexDefs property published. This allows the
component to use the indexes.
Data Type: TDataSet

MaxHeight
Defines the maximum Height of the grid in the related dialog. Use this property to control the
height of the popup-dialog. The default value for a standard VGA display (640 x 480) is 209.
Data Type: Integer
Valid Values: Positive integer value

MaxWidth
This property defines how wide the dialog box is allowed to grow, in pixels. The default value
is 0, which allows the dialog box to grow to the entire width of the screen.
Data Type: Integer
Valid Values: Depends on your screen’s display resolution

Options
This property contains a set of Boolean values that control the appearance of the dialog box, as
described below. The default values are opShowOK and opShowSearchBy.
Data Type: TSet()
Valid Values: opShowOK, opShowSearchBy, opGroupControls, opFixFirstColumn and
opShowStatusBar (described below)

opShowOKCancel When True, the OK and Cancel buttons are displayed in the dialog
box. When False these buttons are not displayed—OK can be
simulated by double-clicking an entry or by selecting it and then
pressing the Enter key. Cancel can be simulated by pressing the Esc
key or by closing the dialog box window. The default is True.

248 Chapter 5, InfoPower Component Reference , TwwLookupDialog

opShowSearchBy When True, the Search By drop-down control is displayed in the
dialog box. When False, this control is not visible. The default value
is True.

opGroupControls When True, the Search Characters and Search By controls are

displayed side-by-side above the grid. When False, the Search
Characters control is displayed above the grid and the Search By
control is displayed below the grid. The default value is False.

opFixFirstColumn When True, the left-most column of the grid is fixed (non-

scrollable). When False, the left-most column can be scrolled out of
view. The default value is True.

opShowStatusBar For use with Paradox tables only. When True, a status bar is added

to the dialog box that displays the table name, current record
number and total number of records in the table.

PictureMaskFromDataSet
This property is only relevant if your datasource is attached to a TwwTable, TwwQuery,
TwwQBE, or TwwClientDataset component, as it is always treated as false in other cases.

When customizing the picture masks through the select fields dialog (invoked by clicking on
the selected property at design time), the mask information is stored in the related dataset if
this property is True. Otherwise the mask information is stored as a property in the related
visual component. By storing the mask information in the dataset, you do not need to re-enter
the picture mask for other visual controls attached to this same database field.
Data Type: boolean

PictureMaskFromField
Setting this property to True will allow the dialog to automatically use the picture mask
defined for the database field when the end-user is entering the text to search for.
Data Type: Boolean

PictureMasks
The assigned picture mask information is stored in this property if PictureMaskFromDataset is
false. See the PictureMaskFromDataSet property.
Data Type: TStrings

Selected
Clicking the “...” button or double-clicking the SearchDialog component displays the Select
Fields dialog box. This dialog box allows you to select the fields you want displayed in the
grid, their titles, widths, control types and link information. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) The default value is all fields selected, using the
field name as it’s title, displayed as a Field control for a width equal to the number of
characters in the field or the title, whichever is longer.

Chapter 5 - InfoPower Component Reference, TwwLookupDialog 249

Data Type: (Internal to InfoPower)

Tag
This is the standard Delphi Tag property that you can use for your own internal processing
needs. The default value is 0.

UserButton1Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton1Click event. The default value is blank.
Data Type: String

UserButton2Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton2Click event. The default value is blank.
Data Type: String

UseTFields
When the UseTFields property is set to true the Selected properties Display settings
information will be stored and retrieved from the LookupTable. When it is set to False the
Selected properties Display settings information is stored with the TwwLookupDialog. The
default is True.
Data Type: Boolean

Required property assignments
LookupTable, LookupField

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwidlg.pas in the
InfoPower source sub-directory. If you do not have the source code version of InfoPower, then
perform the steps in Chapter 4's topic "Determining the object names of the controls contained
in an InfoPower dialog" on the wwidlg.dfm file contained in the InfoPower lib directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | SearchDialog property.

OnInitDialog
Allows you to completely customize every aspect of the dialog box or perform some action
during the initialization of the dialog box. When using this event, your code must reference
wwidlg in your source file’s Uses clause. This gives you access to all the components in the
dialog. For example, you can modify the grid's properties, define custom events, etc.

250 Chapter 5, InfoPower Component Reference , TwwLookupDialog

Example: The following code tells the first user-defined button to show a hint when the user
moves the mouse pointer over the button:

procedure TForm1.wwLookupDialog1InitDialog(
 Dialog: TwwLookupDlg);
begin
 with Dialog do begin
 UserButton1.hint := 'Hint for user button 1';
 UserButton1.showHint := True;
 end
end;

OnCloseDialog
This event allows you to perform any custom action before the dialog is actually closed

OnPerformCustomSearch
When using a large lookuptable from a remote server, the performance of the dialog’s
incremental searching can significantly degrade. To resolve this issue, InfoPower adds a new
event where you can control the specific action that takes place after the user types a character.
In particular the custom action can update the query to only return the records that you are
interested in. When using this event, your code is responsible for manipulating the
lookuptable based on the parameter values passed in. See the TwwDBLookupCombo
OnPerformCustomSearch event for a description of the events parameters.

OnSortChange
If you want to perform some custom action when the end-user makes a selection from the
SortBy combo, then place your custom code here.

OnUserButton1Click
When you want to display developer-defined button #1 on the dialog box, enter the caption
text for the button in the UserButton1Caption property and then add code to this event that
will be executed when the end-user clicks the button.

Tip: If you wish for this dialog to immediately close after executing your code, assign the
ModalResult property of the dialog. The Sender parameter is cast to a TForm to get a handle
to the actual dialog on the screen.

procedure TForm1.wwLookupDialog1UserButton1Click(
 Sender: TObject; LookupTable: TDataSet);
begin
 (Sender as TForm).ModalResult:= mrOK;
end;

OnUserButton2Click
When you want to display developer-defined button #2 on the dialog box, enter the caption
text for the button in the UserButton2Caption property and then add code to this event that
will be executed when the end-user clicks the button.

Chapter 5 - InfoPower Component Reference, TwwLookupDialog 251

Added Methods

Execute
Display the lookup dialog box to the end-user. This method returns a value of False if the user
cancelled the dialog, and True if the user did not cancel.

How To

Perform a lookup and fill:
The following example performs a lookup and fill when the end-user clicks on a button. You
can easily attach this code to any event you desire (i.e. pull-down menus, keypress, etc.). In
this example, the Zip field of table CustomerTable is looked up in a separate zip code table.
After the end-user selects the zip code, the City and State fields are filled into the
corresponding CustomerTable fields:

procedure TGridDemo.Button1Click(Sender: TObject);
begin
 with wwLookupDialog1 do begin
 { Reset back to primary index in case user changed }
 { the index the last time the dialog was called. }
 (LookupTable as TwwTable).IndexName := '';

 { Pre-select record in lookup table }
 (LookupTable as TwwTable).wwFindKey([CustomerTableZip.AsString]);

 if Execute then begin
 { Fill the corresponding fields in CustomerTable }
 CustomerTable.edit;
 CustomerTableZip.AsString :=
 LookupTable.fieldByName('Zip').AsString;
 CustomerTableCity.AsString :=
 LookupTable.fieldByName('City').AsString;
 CustomerTableState.AsString :=
 LookupTable.fieldByName('State').AsString;
 end
 end
end;

Using Multiselect with the TwwLookupDialog Component:
The following example demonstrates how one can multiselect from a TwwLookupDialog
component and then iterate through the selections and perform whatever action is necessary on
the lookuptable. In this example the TwwLookupDialog will fill a listbox with the Customer
No of all the selected records. The table used in this example is IP4CUST.DB and is located
in the InfoDemo5 DatabaseName alias.

1. Add a TwwTable component to your form and set the following properties:
 Active = True (after defining the DatabaseName and TableName)
 DatabaseName = InfoDemo5
 Name = CustomerTable
 TableName = IP4CUST.DB

252 Chapter 5, InfoPower Component Reference , TwwLookupDialog

2. Add a TListBox component to your form and set the following properties:
 Name = ListBox1

3. Add a TwwLookupDialog component form and set the following properties:
 LookupTable = CustomerTable

 GridOptions | dgMultiSelect = True

4. Drop a TButton on the form and put the following code in the TButton’s OnClick event.
Procedure TForm1.Button1Click(Sender: TObject)
begin
 wwLookupDialog1.Execute;
end;

5. Attach the following code to the OnCloseDialog event. This code fills the listbox named
ListBox1 with the Customer No of each selected record.
procedure TForm1.wwLookupDialog1CloseDialog(Dialog: TwwLookupDlg);
 var i:integer;
begin
 with dialog.wwdbgrid1,dialog.wwdbgrid1.datasource.dataset do
 begin
 for i:= 0 to selectedlist.count-1 do begin
 GotoBookmark(selectedlist[i]);
 Listbox1.items.add(FieldByName('Customer No').asString);
 end
 end
end;

6. Attach the following code to the OnInitDialog event. This code pre-selects records in the
LookupDialog based on the entries in ListBox1.
procedure TForm1.wwLookupDialog1InitDialog(Dialog: TwwLookupDlg);
 var i: Integer;
begin
 with Dialog.wwdbgrid1, CustomerTable do
 begin
 for i:= 0 to ListBox1.items.count-1 do begin
 if FindKey([Listbox1.items[i]]) then
 Selectedlist.add(Getbookmark);
 end;
 First;
 end
end;

Tips
♦ TwwLookupDialog is great general purpose component because it can be

displayed at any time, from any source code or attached to any event of any
component.

♦ You can use this component to access lookup tables even when they use
multi-field lookup indexes. When pre-selecting the record, just remember to
specify all the fields. The following specifies two lookup values.

LookupTable.SetKey;
LookupTable.FieldByName('Field1').AsString := LookupValue1;
LookupTable.FieldByName('Field2').AsString := LookupValue2;
LookupTable.GotoKey;

Chapter 5 - InfoPower Component Reference, TwwMemoDialog 253

TwwMemoDialog

 The TwwMemoDialog component itself is non-visual but when executed it provides
your end-users with a pop-up, resizable window where they can view or edit the data stored in
memo fields. This is the same dialog box that appears when you double-click a memo field
from within a running TwwDBGrid component. Options include giving the user the ability to
resize the dialog window, whether or not to automatically word-wrap the memo text to fit
within the window’s boundaries, whether or not to display the memo field in the TwwDBGrid
component, if one is present, whether or not to allow the user to edit the memo, and providing
the user with 0, 1 or 2 custom buttons that you define the action for.

Figure 5.21 - InfoPower’s TwwMemoDialog component allows
your end-users to enter, view and edit data stored in a memo field.

Ancestor
TComponent

Added properties

Caption
This property contains a text value that is displayed in the editor window’s title bar. The
default value is blank.
Data Type: String

254 Chapter 5, InfoPower Component Reference , TwwMemoDialog

DataField
This property defines the name of the field you want displayed in the memo editor window.
The default value is blank.
Data Type: String
Valid Values: Valid field name

DataSource
This property contains the name of a TDataSource component that provides the memo editor
with data. The default value is blank.
Data Type: TDataSource
Valid Values: Valid DataSource component name

DlgHeight
This property defines the height of the dialog box in pixels. The default value for a standard
VGA screen driver is 396.
Data Type: Integer
Valid Values: Depends on your screen resolution.

DlgLeft
This property defines the left-most position of the dialog box in pixels. If this value is 0, then
the dialog is automatically centered horizontally. The default value for a standard VGA screen
driver is 0.
Data Type: Integer
Valid Values: Depends on your screen resolution.

DlgTop
This property defines the top-most position of the dialog box in pixels. If this value is 0, then
the dialog is automatically centered vertically. The default value for a standard VGA screen
driver is 0.
Data Type: Integer
Valid Values: Depends on your screen resolution.

DlgWidth
This property defines the width of the dialog box in pixels. The default value for a standard
VGA screen driver is 561.
Data Type: Integer
Valid Values: Depends on your screen resolution.

Font
This is the standard Delphi Font property that allows you to define the font and its attributes
used to display the memo data in the editor window.
Data Type: TFont

Chapter 5 - InfoPower Component Reference, TwwMemoDialog 255

Lines
Use this property if you do not wish to bind your TwwMemoDialog to a database field, but
instead want to preset its contents. Upon return of the execute method, the lines property is
updated. This property is ignored if you have a assigned the component’s datasource and
datafield properties.
Data Type: TStrings

MemoAttributes
This property contains a set of Boolean values that control the display of Memo data, as
described below. The default values are mSizable and mWordWrap.
Data Type: TSet()
Valid Values: mSizable, mWordWrap, mGridShow, mViewOnly (described below)

mSizable When True, the end-user is allowed to resize the pop-up memo editor
window. When False, the pop-up editor is displayed as a dialog box. The
default value is True.

mWordWrap When True, word wrapping is automated by adding wrapped words onto
additional lines in a vertical manner as necessary. When False, the
entire display scrolls horizontally, to the left and right, as words are
added. The default value is True.

mGridShow When True, the memo data is displayed in the grid. When False, memo
data is not displayed in the grid. The default value is False. (Warning:
Enabling this option dramatically slows down the grid display since
memo data must be retrieved from a file other than the table being
accessed.)

mViewOnly When True, the user may not edit the contents of the memo and only the
OK button is displayed. When False, the user may edit the memo data
and both OK and Cancel buttons are displayed. The default value is
False. (Note: If the grid or field ReadOnly property is set to True, this
property is automatically set to True.)

mDisableDialog This property does not have any effect in the stand-alone
TwwMemoDialog component. This property is only used in the
MemoAttributes property of the TwwDBGrid.

Tag
This is the standard Delphi Tag property that you can use for your own internal processing
needs. The default value is 0.

UserButton1Caption
This property serves two purposes. First, when the value is blank, no extra button is created on
the memo dialog box. Second, when the value is non-blank, a button is created on the memo
dialog box with the caption specified in this property. The default value is blank. To define an

256 Chapter 5, InfoPower Component Reference , TwwMemoDialog

action that should take place when the user clicks this button, refer to the OnUserButton1Click
event described below.
Data Type: String

UserButton2Caption
This property serves two purposes. First, when the value is blank, no extra button is created on
the memo dialog box. Second, when the value is non-blank, a button is created on the memo
dialog box with the caption specified in this property. The default value is blank. To define an
action that should take place when the user clicks this button, refer to the OnUserButton2Click
event described below.

Modified properties
None.

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwmemo.pas in
the InfoPower source sub-directory. If you do not have the source code version of InfoPower,
then perform the steps in Chapter 4's topic "Determining the object names of the controls
contained in an InfoPower dialog" on the wwmemo.dfm file contained in the InfoPower lib
directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event.

OnCloseDialog
Allows you to define an action when the user closes the MemoDialog. When using this event,
your code must reference the file wwmemo in your source file’s uses clause.

OnInitDialog
Allows you to customize the memo dialog box or perform some action during the initialization
of the dialog box. This event is fired after the dialog box is created, but before it’s displayed on
the screen. When using this event, your code must reference the file wwmemo in your source
file’s Uses clause. For an example of how to use this event, see the How-to section below.

OnUserButton1Click
Allows you to define an action when the user clicks on UserButton1. (See also:
UserButton1Caption property above and How-to section below.)

When using this event, your code must reference the file wwmemo in your source file’s uses
clause.

OnUserButton2Click
Allows you to define an action when the user clicks on UserButton2. (See also:
UserButton2Caption property above and How-to section below.)

Chapter 5 - InfoPower Component Reference, TwwMemoDialog 257

Added Methods

Execute
Display the memo dialog box to the end-user. False is returned if the user clicks the Cancel
button or the user closes the dialog box via the control menu. True is returned otherwise. The
following example will invoke the memo dialog

wwMemoDialog1.Execute;

How To

Pre-define the size and position of a memo dialog box:
Set the DlgHeight, DlgLeft, DlgTop and DlgWidth properties as described in the Added
properties section above.

Change the background color of a memo dialog box to red, using the OnInitDialog
event:
 First, add wwmemo to the Uses clause in your source code file. Second, add the following
line of code to the OnInitDialog event:

Dialog.Memo.Color := clRed;

Add a programmer-defined button to a memo dialog box:
First, enter the caption text you want to appear on the button in the UserButton1Caption or
UserButton2Caption property value. Second, add the code you want executed when the user
clicks the button, to either the OnUserButton1Click or OnUserButton2Click event.

Close the MemoDialog with a user button:
First, enter the caption text you want to appear on the button in the UserButton1Caption.
Second, add the following lines of code to use the UserButton1 to execute your code and then
close the form using the OK button.

procedure TForm1.wwMemoDialog1UserButton1Click(
 Dialog: TwwMemoDlg; Memo: TMemo);
begin
 Dialog.OkBtnClick(Dialog);
 Dialog.ModalResult := mrOk;
end;

When using this event, your code must reference the file wwmemo in your source file’s uses
clause.

Add a TimeStamp When Editing Memos:
First, add a TwwMemoDialog to your form named wwMemoDialog1 and assign the
DataSource and DataField properties. Second, add the following lines of code to the
OnInitDialog event of the wwMemoDialog. If you want the TwwDBGrid’s Memo to have a
timestamp, then you just need to assign this routine in the TwwDBGrid’s OnMemoOpen

258 Chapter 5, InfoPower Component Reference , TwwQBE

event. See Create an OnInitDialog event for a memo dialog box that is embedded in a
TwwDBGrid.

procedure TForm1.wwMemoDialog1InitDialog(Dialog: TwwMemoDlg);
begin
 Dialog.Memo.Lines.Add(DateTimeToStr(Now));
end;

TwwQBE

 The non-visual TwwQBE component allows you to specify Paradox-style Query-By-
Example query statements that are used to supply data to one or more of the other InfoPower
visual interface components placed on your form. Multi-table queries and special queries such
as Insert, Delete and ChangeTo queries are also supported. You can even create a linked,
editable live view of one of the tables used to produce the resulting answer table. Since
InfoPower’s TwwQBE component is inherited from Delphi’s TDataSet component, the Delphi
Fields editor is still available within this component.

When defining QBE statements, it’s a very good idea to create, fully test and then save your
query via the Database Desktop or the native application (Paradox or dBASE for Windows).
Then, click the Load button of the QBE string editor to load this saved query file into the
editor. These environments make it much easier to create, test and validate the results of a
QBE than the services provided in Delphi.

Before you add a TwwQBE component to your form, please read about and fully understand
how the AnswerTable and AuxiliaryTables properties function. Also, be aware of the fact that
the Borland Database Engine, which is used to process the QBE, by default uses the drive and
directory where your program file (.exe) is located as its working directory. If this drive does
not have sufficient free space for all of the work files created by the QBE processor, including
the resulting answer table, you will receive errors and the query will not complete.

If you know more about SQL than Paradox-style QBE, or if your tables are from an SQL
database, you might want to consider using the TwwQuery component instead.

Ancestor
TDBDataSet.

Required supporting components
No other Delphi components are required to use a TwwQBE component, but you need to have
an existing database table that can be accessed with this component. To add a data-aware
component that is connected to the resulting answer table, you need to first add a TDataSource
component that uses the TwwQBE component as its DataSet.

Chapter 5 - InfoPower Component Reference, TwwQBE 259

Added Properties

AnswerTable
This property allows you to override the default database alias and table name used for a
resulting table. The value must be specified in the following format:

 :<DatabaseName>:<TableName>.db

Where <DatabaseName> is an existing database alias and <TableName> is the name of the
physical result table to be created. Notice the required use of the colon “:” character before
and after the <DatabaseName> value, and also the “.db” value at the end of the
<TableName> value. This component currently supports only the Paradox style result table
(.db). When a physical result table is created, it remains on your disk until it is deleted. If the
specified AnswerTable already exists, it will be overwritten without warning.

When this property is left blank, the default value, the Borland Database Engine (BDE) creates
the query result table as a hidden work file in the directory pointed to by Delphi’s
Session.PrivateDir setting, which is the directory where your program is being executed from.
If you don’t need to create a physical result table (the default hidden work table is fine), but the
default drive and directory don’t contain enough free space for all the necessary work files, you
can manually define the working directory, to any drive and directory that contains sufficient
free space, by adding the following line of code to this component’s BeforeOpen event: (the
drive and directory must be specified within double quote marks):

 Session.PrivateDir := 'd:\private';

Data Type: String
Valid Values: Valid DatabaseName (alias) and file name

AuxiliaryTables
This property tells the QBE processor whether or not to create the standard auxiliary tables
(keyviol, changed, inserted, etc.). When an auxiliary table is created, it remains on your disk
until it is deleted. If an auxiliary table already exists, it will be overwritten without warning.
The default value is True.

Caution: If you set this property to False, you may not be able to fully check the results of your
QBE since no auxiliary tables will be created for manual verification.
Data Type: Boolean

BlankAsZero
When True blanks in numeric fields in a table are treated equivalent to a zero. The default
value is False.
Data Type: Boolean

260 Chapter 5, InfoPower Component Reference , TwwQBE

ControlType
This property holds information about the type of control used to display a field if the field is
contained within a grid component. The default value is Field.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

LookupFields
Maintained for backwards compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

LookupLinks
Maintained for backwards compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

OnFilterOptions
See the documentation for OnFilter under the TwwTable component

PictureMasks
This property holds information about a field’s picture mask. See Using InfoPower’s Picture
Masks in Chapter 4 for more details.
Data Type: TStrings
Valid Values: (Internal to InfoPower)

QBE
This property holds the actual QBE query statements. After creating a query via the Database
Desktop, or from within dBASE or Paradox, save the query as a .QBE file (File | Save menu
options). You can then load this previously saved file into the Delphi String list editor window
for the QBE property by clicking on the Load button and selecting the file you previously
saved. Optionally, you can specify the QBE statements interactively. The default value is blank
- no QBE defined.

Notes:
1) The contents of the “ANSWER:” QBE statement generated when you save a query to

a file are ignored by the BDE QBE processor. Use the AnswerTable property to
specify a database name (alias) and table name if you want to create a physical query
result table on your disk.

2) The contents of the Selected Fields list box of the Select Fields dialog box default to
all fields that are selected via the QBE statements contained in the QBE property.

Data Type: TStrings
Valid Values: Valid Query By Example code (see example in “How to” below).

Chapter 5 - InfoPower Component Reference, TwwQBE 261

Modified properties
None.

Required property assignments
DatabaseName and QBE (valid Paradox-style QBE code).

Added Events

OnFilter
See the documentation for OnFilter under the TwwTable component

OnFilterEscape
See the documentation for OnFilterEscape under the TwwTable component.

OnInvalidValue
See Using InfoPower’s Picture Masks in chapter 4.

Added Methods

ClearParams
This method clears the current parameter definitions for the related TwwQBE component.
Refer to the SetParam method for more details on using parameters in a TwwQBE component.
Its calling syntax is as follows:

Procedure ClearParams;

SetParam
This method allows you to substitute tilde (~) variables in your QBE. ParamName specifies the
name of the tilde variable (exclude the ~), and ParamValue specifies the value it should be. Its
calling syntax is as follows:

Procedure SetParam(paramName: string; paramValue: string);

Example: Given the following QBE stored in a TwwQBE component, the following code
replaces the “~LastName” variable with the string ‘Woll’, and then re-executes the QBE:

Query
EZCUST.DB | CustomerNo | CompanyName | FirstName | LastName |
 | Check | Check | Check | ~LastName |
EndQuery

procedure TForm1.Button1Click(Sender: TObject);
begin
 wwQBE1.Active := False;
 wwQBE1.ClearParams;

262 Chapter 5, InfoPower Component Reference , TwwQBE

 wwQBE1.SetParam('LastName','Woll');
 wwQBE1.Active := True;
end;

wwFilterField
See the documentation for wwFilterField under the TwwTable component

How To

Define QBE statements:
If you want to query the Customer table of your CustData database, selecting only records
where the State is equal to CO and the Status is equal to P, retrieving the CustNum,
CompanyName, City, State, Zip, Status and FullName fields, create the query by using the
Database Desktop and then save it to a .QBE file via the File | Save menu options. The
resulting query definition would look like the following:

Query
ANSWER: :PRIV:ANSWER.DB

:CustData:CUSTOMER.DB | CustNum | CompanyName | City | State |
 | Check | Check | Check | Check CO |

:CustData:CUSTOMER.DB | Zip | Status | FullName |
 | Check | Check P | Check |
EndQuery

Then, open the QBE String list editor by clicking on the “...” button of the QBE property, click
the Load button, select the .QBE file you just saved, click the OK button of the String list
editor.

Next, set the DatabaseName property of the TwwQBE to the alias referenced in your QBE.
The following example references an alias named CustData.

DatabaseName := CustData

Heterogeneous QBEs (Using more than one alias)
On occasion you may have a QBE which references more than one alias. InfoPower requires
that each alias of a query be opened prior to executing the QBE. By specifying the
DatabaseName property, you can open one alias. To open additional aliases you will need to
drop TDatabase components for each alias, assign their AliasName property, and set their
connect property to True.

Using parameters in your QBE statement
You can use parameters to modify your QBE statement at runtime. The TwwQBE component
will interpret names preceded by a tilde (~) character as a parameter that you can assign at
runtime. Use the method ClearParams to reset your tilde parameters and SetParam to assign
them a value. To re-execute your QBE after assigning the parameters, toggle the QBE’s active
property from False back to True. See the method SetParam for an example.

Chapter 5 - InfoPower Component Reference, TwwQBE 263

Tips
♦ If you want the answer table written to your hard drive, specify a database

name (alias) and table name in the AnswerTable property.
♦ If you want the normal auxiliary QBE tables written to your hard drive, set

the AuxiliaryTables property to True.
♦ The Delphi Fields editor is also available within this component.
♦ If you receive the error message “Error creating cursor handle” when

executing your QBE, it means that your query was unable to be executed.
Likely causes are incorrect syntax in your QBE specification, unopened
aliases, or missing tables.

264 Chapter 5, InfoPower Component Reference , TwwQuery

TwwQuery

 The non-visual TwwQuery component allows you to define a query with SQL
statements that supplies data to one or more of the other InfoPower visual interface
components placed on your form. InfoPower allows you to use TQuery instead of TwwQuery,
but this component is provided for backward compatibility. The TwwQuery additionally will
allow you to filter on lookupfields.

Since InfoPower’s TwwQuery component is inherited from Delphi’s TQuery component, all
standard Delphi TQuery component properties and functionality are available, such as
Delphi’s built-in Fields editor and the SQL Query Builder (if using the Client/Server version
of Delphi).

Ancestor
TQuery.

Required supporting components
None.

Added Properties

ControlType
This property holds information about the type of control used to display a field if the field is
contained within a grid component. The default value is Field. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) To change this property at runtime, see the
SetControlType method of the wwDBGrid component.
Data Type: (Internal to InfoPower)

LookupFields
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)

LookupLinks
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)

OnFilterOptions
See the documentation for OnFilter under the TwwTable component

PictureMasks
This property holds information about a field’s picture mask. See Using InfoPower’s Picture
Masks in Chapter 4 for more details.
Data Type: TStrings

Chapter 5 - InfoPower Component Reference, TwwQuery 265

Valid Values: (Internal to InfoPower)

ValidateWithMask
See the documentation for ValidateWithMask under the TwwTable component

Modified properties
None.

Required property assignments
1) DataSource or DatabaseName, and 2) SQL—valid query via SQL statements.

Added Events

OnFilter
See the documentation for OnFilter under the TwwTable component

OnFilterEscape
This event is fired after the end-user has cancelled a filter in progress by pressing the <Esc>
key. You may wish to use this event to display an informational message to the user so that
they are aware they have cancelled the filter. See also the onFilter event.

OnInvalidValue
See Using InfoPower’s Picture Masks in Chapter 4.

Added Methods

SetLookupField
See the documentation for SetLookupField under the TwwTable component

wwFilterField
See the documentation for wwFilterField under the TwwTable component

How To
The TwwQuery component is inherited from Delphi’s TQuery, so please refer to your Delphi
manual for more information about this component.

Since InfoPower’s TwwQuery component is inherited from Delphi’s TQuery component, you
are provided with 100% backward compatibility. Thus, you can safely replace your use of
TQuery with TwwQuery at any time. In addition, all standard Delphi component properties
and functionality are still available, such as the Fields editor, and the SQL Query Builder if
you use the C/S version of Delphi.

266 Chapter 5, InfoPower Component Reference , TwwRadioButton

TwwRadioButton
The TwwRadioButton is not a standalone control, but a control that is created for each item in
a TwwRadioGroup.

Ancestor
TRadioButton

└─TwwCustomRadioButton

Added Properties

Alignment
Assign this property to change the location of the text within the control. If Alignment is set
to taRightJustify, then the text is aligned on the right-hand side of the control. If Alignment is
set to taLeftJustify, then the text is aligned on the left-hand side of the control.

AlwaysTransparent
Set this to true if you wish for the radio button to be transparent even when it has the focus.
Normally when Frame.Enabled and Frame.Transparent are both true, the control is only
transparent when it does not have the focus. Note: This property has no effect unless
Frame.Enabled and Frame.Transparent are both true.

Caption
Assign a string to this property to assign the label that appears next to the radio button. The
TwwRadioGroup sets the caption of each radio button based on its Items property.

Checked
This value indicates whether or not the radio button is selected or not.

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.
Data Type: TwwEditFrame

Images
Assign this property if you wish to change the icons displayed by the radio button. The first
image in the imagelist is used as the unselected icon and the second image is used as the
selected icon.
Data Type: TImageList

Indents
Use Indents to change the relative placement of the icons and the text.

Chapter 5 - InfoPower Component Reference, TwwRadioButton 267

ButtonX Assign this property to specify the number of pixels to move the radio button
icon to the left (positive value) or right (negative value).

ButtonY Assign this property to specify the number of pixels to move the radio button
icon upward (negative value) or downward (negative value).

TextX Assign this property to specify the number of pixels to move the text to the
left (positive value) or right (negative value).

TextY Assign this property to specify the number of pixels to move the text upward
(negative value) or downward (negative value).

ShowFocusRect
When true, a focus rectangle is drawn around the text. You may wish to set this property to
false when using custom framing, as this can already give the end-user a visual cue to when
the checkbox has the focus.

ValueChecked
This is the value that is stored into the database when the radio button is selected.

ValueUnchecked
This is the value that is stored into the database when the checkbox is not selected.

268 Chapter 5, InfoPower Component Reference , TwwRadioGroup

TwwRadioGroup

 InfoPower integrates a versatile new radio group control into its suite. A radio group
contains a set of radio buttons that are grouped in such a way that only one item can be
selected. This provides you with an easy way to ensure that the enduser enters one and only
one of the options presented. This control is especially useful since it can be bound to a
database field that contains a small amount of possible values.

To add radio buttons to a TwwRadioGroup, edit the items property in the Object Inspector.
Each string in Items makes a radio button appear in the group box with the string as its
caption. Use the values to map the displayed value to a different stored value when the control
is attached to a database field.

Some additional powerful features include the following:

♦ Support for your own custom bitmaps for the radio button glyphs selected and
unselected states.

♦ Integration with the InfoPower grid, record-view components, and data inspector.

♦ Show glyphs in addition to the text or glyphs only as in the Payment Method radio
group example below.

♦ Custom framing and transparency support for a consistent look with other InfoPower
edit controls.

Ancestor
TCustomGroupBox

└─TwwCustomTransparentGroupBox

└─TwwCustomRadioGroup

Chapter 5 - InfoPower Component Reference, TwwRadioGroup 269

Added Properties

ButtonFrame
This property allows you to set the framing style properties of the generated radio buttons in
the TwwRadioGroup. See the topic “Key properties and events for custom framing” in chapter
4 for more information on this property.
Data Type: TwwEditFrame

Frame
To enable custom framing with this control, you must set ShowBorder to False.
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.
Data Type: TwwEditFrame

GlyphImages
Assign this property if you wish to display a glyph in place of or next to the radio buttons
caption text. The glyphs in the GlyphImages properties needs to be in the same order as the
items property. Set ShowText to False to show only glyphs and no text in the radio group.
Data Type: TImageList

Images
Assign this property if you wish to change the selection icons displayed by the radio group.
The first image in the imagelist is used as the unselected icon, and the second image is used as
the selected icon.
Data Type: TImageList

Indents
Use Indents to change the relative placement of the icons and the text.

ButtonX Assign this property to specify the number of pixels to move the radio button
icon to the left (positive value) or right (negative value).

ButtonY Assign this property to specify the number of pixels to move the radio button
icon upward (negative value) or downward (negative value).

TextX Assign this property to specify the number of pixels to move the text to the
left (positive value) or right (negative value).

TextY Assign this property to specify the number of pixels to move the text upward
(negative value) or downward (negative value).

ItemIndex
This runtime only property allows you to get programmatically set the selected item for an
unbound TwwRadioGroup control. When the control is bound to a database field, there is no
need to initialize it since it will display the value associated with that field automatically.
Data Type: Integer

270 Chapter 5, InfoPower Component Reference , TwwRadioGroup

Items
Items holds a TStrings object that lists the captions of the radio buttons in the group. These
captions become the values of the radio buttons, unless overridden by the Values property.
Data Type: TStrings

ShowBorder
When true, a standard radiogroup engraved border will appear around the outside edge of the
TwwRadioGroup control. To enable custom framing as in other InfoPower controls you can
set this property to False and use the Frame property.
Data Type: Boolean

ShowFocusRect
When true, a focus rectangle is drawn around the text. You may wish to set this property to
false when using custom framing, as this can already give the end-user a more elegant visual
cue to when the radio button has the focus.
Data Type: Boolean

ShowGroupCaption
Set this property to false to hide the main caption of the TwwRadioGroup. This may be useful
to you if your radio group is embedded in the grid or datainspector control.
Data Type: Boolean

ShowText
Set this property to false to hide the text of the radio buttons in the TwwRadioGroup
Data Type: Boolean

Transparent
Set this property to make the TwwRadioGroup paint transparently.
Data Type: Boolean

TransparentActiveItem
Set this property to make the active item in the radio group also paint transparently.
Data Type: Boolean

Value
Holds the value of the TwwRadioGroup control based on the selected radio button.
Data Type: String

Values
By default the value of the radio buttons in the group are determined by the items property.
However, often you may want the values to differ from the captions. For example, if you use
radio buttons to represent a database field whose content can be ‘Y’ or ‘N’, you may want the
radio button’s caption to have more descriptive text like ‘Yes’ or ‘No’. So you would enter
‘Y’ and ‘N’ in the Values list, and ‘Yes’ and ‘No’ in the Items list.

Chapter 5 - InfoPower Component Reference, TwwRadioGroup 271

Data Type: TStrings

Added Events

OnCreateRadioButton
Use this event to customize the dynamically generated TwwRadioButtons that are created
based on the Items property. See TwwRadioButton.

Parameters

Sender : TwwCustomRadioGroup RadioGroup that is creating the buttons.

RadioButton : TwwRadioButton DataSet being looked up

How To

Setting Items and Values at Runtime
This example uses a database radio group box connected to field in a dataset. The actual field
can contain one of the values ‘Y’, ‘N’, or ‘M’. However, you want the user to see the
following captions on the radio buttons: ‘Yes’, ‘No’, or ‘Maybe’.

When the code runs, three radio buttons appear in the group box. If the current record in the
dataset contains any of the values contained in the Values property, the appropriate radio
button is automatically checked. When the user selects a radio button with the mouse or the
keyboard, then the corresponding string in the Values property is stored into the field.

with wwRadioGroup1 do
begin
 Items.Clear;
 Items.BeginUpdate;
 Items.Add('Yes');
 Items.Add('No');
 Items.Add('Maybe');
 Items.EndUpdate;
 Values.Clear;
 Values.Add('Y');
 Values.Add('N');
 Values.Add('M');
end

Make a Transparent TwwRadioGroup.
Set the Transparent property to True in order to make the Radio Group Transparent.
However, the active item of the TwwRadioGroup is a TwwRadioButton that will not by default
be transparent. If you want a completely transparent control, then set TransparentActiveItem
to True as well.
Warning: Do not use transparency if there is no background image.

272 Chapter 5, InfoPower Component Reference ,

TwwRecordViewDialog

 The TwwRecordViewDialog component is a non-visual component that provides a
convenient way to view or edit a record's contents. The component dynamically creates a form
based on your DataSet's field properties. This component removes the necessity of building
custom record editing forms for each table. InfoPower's RecordView supports embedded
controls, picture masks, horizontal or vertical display, custom menus, modal or non-modal
display, grid integration, and detailed display options.

Figure 5.22 - InfoPower’s TwwRecordViewDialog component allows your end-users a
convenient way to view or edit a record's contents. The above uses the record-view’s
horizontally layout style with the labels displayed underneath the controls.

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 273

Ancestor
TComponent
 └─TwwCustomDialog

Required supporting components
TDataSource.

Added Properties

BorderStyle
This property defines the record-view form’s BorderStyle. The default is bsSizeable.
Data Type: TFormBorderStyle
Valid Values: Standard Delphi FormBorderStyle

Caption
This property contains a text value that is displayed in the editor window’s title bar. The
default value is ‘Record View’
Data Type: String

ControlInfoInDataset
Set this property to False if you wish for the record view dialog to store the information about
the embedded controls into its ControlType property . You may wish to set this property to
False if you want the record view dialog to have no dependency upon the embedded control
information stored in the dataset. By default this property is True, which means that
information about the embedded controls is stored in the related TDataSet.

Note: Normally you will want to leave this property as True. Set this property to False if you
have more than one IP container control such as a grid or record-view attached to the same
dataset, and do not wish for them to share the same custom control.

ControlOptions
This property contains a set of Boolean values that control the display of embedded controls.
Data Type: Set of TwwRecordViewControlOption
Valid Values: rvcTransparentLabels, rvcTransparentButtons, rvcFlatButtons

rvcTransparentLabels If True, then the labels in the TwwRecordViewDialog will be
transparent. This is useful when you have a background image
being used in the dialog. This property defaults to True.

rvcTransparentButtons If True, then controls with buttons in the dialog will have their

buttons be displayed transparently.

rvcFlatButtons If True, then controls with buttons in the dialog will have their

buttons be displayed as flat.

274 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

ControlType
This property is equivalent to the ControlType property (See TwwTable ControlType).
InfoPower stores the control information into this property if the ControlInfoInDataSet
property is False. Otherwise this property is not used.

DataSource
This property contains the name of a TDataSource component that provides the record view
form with data. The default value is blank.
Data Type: TDataSource

EditFrame
See the topic “Key properties and events for custom framing” in chapter 4 for information on
this property. Set the EditFrame property to customize how the contained edit control’s
borders and background are painted. For instance, set the EditFrame.Enabled and
EditFrame.Transparent properties to True to display the edit controls transparently. See also
the OnSetControlEffects to individually customize the borders of a control.
Data Type: TwwEditFrame

EditSpacing | HorizontalView
This property defines the spacing values for the controls in the record view form when using
Style=rvsHorizontal

BetweenEditsInRow Horizontal Space between the edit controls
Data Type: Integer

BetweenLabelEdit Vertical Space between the label and the related edit control
Data Type: Integer

BetweenRow Vertical Space between the edit control and the top of the label on
the next row
Data Type: Integer

LabelIndent Horizontal indentation of label with respect to its related edit
control
Data Type: Integer

EditSpacing | VerticalView
This property defines the spacing values for the controls in the record view form when using
Style=rvsVertical

BetweenLabelEdit Horizontal Space between the label and the related edit control
Data Type: Integer

BetweenRow Vertical Space between the edit controls
Data Type: Integer

Font
This is the standard Delphi Font property that allows you to define the font and its attributes
used to display the controls in the record-view form. See also the LabelFont property.
Data Type: TFont

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 275

Valid Values: Standard Delphi Font options

FormPosition
Placement and size of the record-view form

Height Height of the record-view form. Defaults to 0 which means to grow as
needed.
Data Type: Integer

Left Left position of the record-view form. Default of 0 means to auto-center the
form
Data Type: Integer

Top Top position of the record-view form. Default of 0 means to auto-center the
form
Data Type: Integer

Width Width of the record-view form. Defaults to 0 which means to grow as
needed.
Data Type: Integer

LabelFont
This is the standard Delphi Font property that allows you to define the font and its attributes
used to display the labels in the record-view form. See also the Font property.
Data Type: TFont
Valid Values: Standard Delphi Font options

LinesPerMemoControl
This property determines the height of memo controls in the dialog The default is 2 lines per
memo control.
Data Type: Integer

Margin
Spacing between panels and controls.

BottomOffset Space between the bottom edit control and the bottom of the record-
view panel
Data Type: Integer

LeftOffset Space between the left-most edit control and the left side of the
record-view panel
Data Type: Integer

RightOffset Space between the right-most edit control and the right side of the
record-view panel.
Data Type: Integer

276 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

TopOffset Space between the top edit control and the top of the record-view
panel
Data Type: Integer

Menu
This property allows you to attach your own custom menu to the record-view form. See the
How-to documentation later in this section for an example.
Data Type: TMainMenu

Navigator
Set this property to change the default navigator used by the RecordViewDialog. The object
inspector will display all TwwDBNavigator controls in your current form. When this property
is assigned the NavigatorVisibleButtons property is ignored.

NavigatorButtons
This property defines which buttons in the record-view navigator are visible. To make the
navigator invisible, set the Option | HideNavigator property to True.
Data Type: Set of TNavigatorBtn
Valid Values: Set of Delphi TNavigatorBtn values

NavigatorFlat
If True, then the navigator buttons are displayed as flat icons. Defaults to False.
Data Type: Boolean

OKCancelOptions
This property contains a set of Boolean values that control the display of the OK and Cancel
buttons in the record-view form
Data Type: Set of TwwRecordViewOKCancelOption
Valid Values: rvokShowOKCancel, rvokAutoPostRec, rvokAutoCancelRec

rvokShowOKCancel If True, then the OK and Cancel buttons are displayed in the
record-view form. This property defaults to True.

rvokAutoPostRect If True, then when the OK button is clicked the record-view
form automatically posts the record. This property defaults to
True.

If the OK button is not visible, then auto-posting only occurs
under the following conditions:

1. The user closes the record-view form and Property
rvoCloseIsCancel is False

2. The dialog is closed with the Enter key. Note: The dialog
can only be closed with the enter key if the property
rvoEnterToTab is False.

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 277

rvokAutoCancelRec If True, then when the Cancel button is clicked the record-
view form automatically cancels the record’s changes by calling
the TDataSet cancel method. This property defaults to True.

If the Cancel button is not visible, then auto-cancel only occurs
under the following conditions:

1. The user closes the record-view form and the Property
rvoCloseIsCancel is True.

2. The dialog is closed with the Escape key.

Options
This property contains a set of Boolean values that control options in the record-view form.
Data Type: Set of TwwRecordViewOption
Valid Values: (rvoHideReadOnly, rvoHideCalculated, rvoHideNavigator,

rvoUseCustomControls, rvoShortenEditBox, rvoModalForm,
rvoStayOnTopForm, rvoConsistentEditWidth, rvoEnterToTab,
rvoConfirmCancel, rvoCloseIsCancel, rvoMaximizeMemoWidth,
rvoUseDateTimePicker, rvoLabelsBeneathControl)

rvoHideReadOnly If True, then readonly fields are not displayed in the record-
view form. Defaults to False.

rvoHideCalculated If True, then calculated fields are not displayed in the record-
view form. Defaults to False.

rvoHideNavigator If True, then the navigator control is not displayed Defaults
to True.

rvoUseCustomControls If True, then embedded controls are used by the record-view
form. If False, then the fields use a regular edit control for
editing. Defaults to True.

rvoShortenEditBox If True, then edit controls that exceed the width of the
record-view form are resized to fit into the form. Defaults to
True.

rvoModalForm If True, then the record-view form is displayed as a modal
dialog. If False, the form is displayed as a non-modal form.
When used non-modally, the end-user can switch to another
form while the record-view form is displayed. Defaults to
True.

rvoStayOnTopForm If True, then the record-view form stays on top of all
other forms. This is useful when rvoModalForm is set to
False as it allows the record-view form to not be hidden when
moving to other forms. Defaults to False.

rvoConsistentEditWidth If True, then edit controls are all the same size. This
property is only used when the Style=rvsVertical. Defaults to
False.

278 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

rvoEnterToTab If True, then carriage returns are converted to a tab.
rvoConfirmCancel If True, then a confirmation dialog appears when the user

cancels the dialog. Defaults to True.
rvoCloseIsCancel If True, then when the user closes the dialog the control bar,

the record-view form treats it as a cancel operation. Defaults
to True.

rvoMaximizeMemoWidth If True, then the record-view form will maximize the width
of the memofields by placing their related edit control on
their own row, and be sized to fit the entire width of the
form. If False, then the design time settings are used.

RvoUseDateTimePicker If True, then the record-view form will automatically create
and use the TwwDBDateTimePicker control to edit dates or
time fields.

rvoLabelsBeneathControl If True, then the record-view form will place the labels
underneath the control. This property is ignored if Style is
rvsHorizontal.

PictureMaskFromDataSet
This property is only relevant if your datasource is attached to a TwwTable, TwwQuery,
TwwQBE, or TwwClientDataset component, as it is always treated as false in other cases.

When customizing the picture masks through the select fields dialog (invoked by clicking on
the selected property at design time), the mask information is stored in the related dataset if
this property is True. Otherwise the mask information is stored as a property in the related
visual component. By storing the mask information in the dataset, you do not need to re-enter
the picture mask for other visual controls attached to this same database field.
Data Type: boolean

PictureMasks
The assigned picture mask information is stored in this property. See the
PictureMaskFromDataSet property.
Data Type: TStrings

ReadOnlyColor
This property determines the color of the read-only fields in the record-view form. Defaults to
clInactiveCaptionText.
Data Type: TColor

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 279

ReadOnlyColor
This property determines the color of the read-only fields in the record-view form. Defaults to
clInactiveCaptionText.
Data Type: TColor

Selected
This property determines the field layout of the record-view form. It determines the field
order, the display labels, and the edit control width. Clicking in this property brings up a
specialized form of the Select Fields Dialog, which allows line-breaks to be inserted. You can
insert line breaks by clicking on the icon.

Figure 5.23 - Select Fields Dialog for TwwRecordViewDialog

Using this dialog you can set picture masks, attach edit controls, select fields, etc. See Using
the Select Fields Dialog Box at the beginning of Chapter 4. The default value is all fields
selected.

Style
This property determines the style of the record-view form’s field display. If set to
rvsHorizontal, then each succeeding field is displayed on the same line until it reaches the
right edge of the form. You can force line-breaks using the Selected property. If set to
rvsVertical, then only one field is displayed per line.

280 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

Figure 5.24 - InfoPower’s TwwRecordViewDialog component

using Vertical and Horizontal layout styles

Data Type: TwwRecordViewStyle
Valid Values: rvsHorizontal, rvsVertical

Required property assignments
DataSource

Added Events
The following events pass a handle to the record-view form. The following objects are
contained within the record-view form.

 Component Name Component Type Description

RecordPanel TPanel Panel containing the scrollbox
 which contains the edit controls.

NavigatorPanel TPanel Panel containing the navigator

ButtonPanel TPanel Panel containing the OK and
 Cancel buttons

Navigator TDBNavigator Record-view Navigator

ScrollBox TScrollBox Scrollbox containing the
 edit controls

OnAfterCreateControl
This event allows you to customize the edit control after the record-view form has created the
control.

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 281

Note : Embedded controls on the record-view form can be customized outside the scope of this
event since the control already exists before the record-view form is shown. However normal
edit controls do not exist until the record-view form is shown, and thus to customize you will
need to use this event.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

CurField: TField Field that is related to the edit control

Control: TControl Control to customize

Example: The following example changes the field ‘Last Name’ so that it’s color is clYellow.
procedure TRecordViewDemoForm.wwRecordViewDialog1AfterCreateControl(
 Form: TwwRecordViewForm; curField: TField; Control: TControl);
begin
 if (curfield.FieldName='Last Name') and
 (Control is TCustomEdit) then TEdit(Control).color:= clYellow;
end;

OnBeforeCreateControl
This event allows you to evaluate the control about to be created and either accept or reject its
placement into the record-view form.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

CurField: TField Field that is related to the edit control

Accept: boolean Set to false to reject the component. Defaults to
True.

Example: The following example will reject the last name field from being included in the
record-view form. Note: You can also remove a field at design time by clicking in the selected
property. However if the fields that are to be included are not known until runtime, then you
can resort to this technique to remove fields.

procedure TRecordViewDemoForm.wwRecordViewDialog1BeforeCreateControl(
 Form: TwwRecordViewForm; curField: TField; var Accept: Boolean);
begin
 if curField.FieldName='Last Name' then Accept:= False;
end;

OnCancelWarning
This event allows you to display your own cancel confirmation dialog. This event is fired only
when the user cancels the dialog and the Options | rvoConfirmCancel is True.

The parameters for this event are as follows.

Form : TForm Record-view form

CanClose: boolean Set to False to leave the record-view form open.

282 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

Example: The following example displays the message Are you sure you wish to cancel? The
record-view form is closed if the user clicks the Yes button

procedure TRecordViewDemoForm.wwRecordViewDialog1CancelWarning(
 Sender: TForm; var CanClose: Boolean);
begin
 CanClose:= MessageDlg('Are you sure you wish to cancel?',
 mtConfirmation, [mbYes, mbNo], 0)=mrYes;
end;

OnCloseDialog
This event allows you to perform any custom action before the record-view form is closed.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

OnInitDialog
This event allows you to perform any custom action before the record-view form is initially
displayed.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

OnResizeDialog
This event allows you to perform any custom action when the dialog is being resized.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

OnSetControlEffects
Use the OnSetControlEffects event to override the RecordView's EditFrame settings for an
individual or selected control.

The parameters for this event are as follows.

Form : TwwRecordViewForm Record-view form

CurField: TField Field that is related to the edit control

Control: TControl Control to customize

Frame: TwwEditFrame Assign this property to change the frame
properties for a control.

ButtonEffects: TwwButtonEffects Assign this property to change the button effects
properties for a control. Warning: You should first
verify that ButtonEffects is not nil before
referencing it.

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 283

Example: The following code in this event will place a left-border when the edit control is tied
to a TBlobField.

procedure TRecordViewDemoForm.wwRecordViewDialog1SetControlEffects(
 Form: TwwRecordViewForm; curField: TField; Control: TControl;
 Frame: TwwEditFrame; ButtonEffects: TwwButtonEffects);
begin
 if curfield is TBlobfield then
 begin
 Frame.NonFocusBorders:=
 Frame.NonFocusBorders + [efLeftBorder];
 end
end;

Added Methods

Execute
Display the record-view form to the end-user. If used modally, False is returned if the user
clicks the Cancel button or the user closes the dialog box via the control menu. If used non-
modally, True is always returned. See also the OnCloseDialog event to execute custom code
when the dialog is closed.

How To

Customize the selection and order of fields in the record-view form
Click on the selected property to invoke the Select Fields Dialog. From here you can select
which fields should be visible in the record view, as well as determine the order of fields. You
can also force line breaks when using style=rvsHorizontal by inserting a <New line>.

Create accelerators for the controls in the record-view form
Click on the selected property to invoke the Select Fields Dialog. From here you can select
the field title. Use the & symbol in the title of the field to create an accelerator in the record-
view form for the field. For instance if the field title was &Last Name, then the field label
would appear as Last Name, and entering Alt | L would move to that control.

Test the record view layout during design time
After customizing your display options for the recordview, you do not need to execute your
program to test the appearance of the record-view form. You can simply dbl-click the
component and it will display the record-view exactly as it would appear at runtime.

Embed custom controls in the record-view form
The record-view form is capable of displaying fields as CheckBoxes, SpinEdits, ComboDlgs,
ComboBoxes, Memo fields, RichEdit fields, and LookupCombos. The control information is
stored at the dataset level, so if you already have attached controls to the dataset using another
component such as the TwwDBGrid you do not need to redefine this control information. To

284 Chapter 5, InfoPower Component Reference , TwwRecordViewDialog

define the control information, click on the selected property and select the Edit Control tab
page. See using the Select Fields Dialog for more information on embedding controls.

Warning- You cannot attach the same custom control to multiple fields. For instance if you
want to use the same drop-down list for Field1 and Field2, you should use 2 separate
TwwDBComboBox’s. This is necessary since both combobox’s would need to be visible at the
same time within the record-view form.

Integrate the TwwRecordViewDialog with the grid.
The record-view dialog is a convenient way of displaying all the details for a particular record.
The TwwDBGrid is a convenient way to scan multiple records at once. You can enable end-
user access to both views from the grid by enabling the icon in the indicator column, and
having it bring up the record-view form when it is clicked. The following steps will
accomplish this:

1. Drop a TwwDBGrid (wwDBGrid1) and a TwwRecordViewDialog
(wwRecordViewDialog1) into your form, and assign the datasource property for each
to the same datasource.

2. Click on the TwwDBGrid’s IndicatorButton property to define the indicator button.
The object inspector will automatically display the newly created indicator button

a) Click on the TwwIButton Glyph property and select a bitmap.

b) Click on TwwIButton OnClick event and attach the following code.
wwDBGrid1.FlushChanges;
wwRecordViewDialog1.execute;

c) The call to FlushChanges ensures that the record-view form sees any changes

made to the grid. If you do not call this method, then the record-view form will
not be able to see the changes made to the currently active field in the grid.

3. Optional - Use the RecordViewDialog's OnInitDialog to set the active control to the
same field that corresponds to the grid's active field. This allows the active field to
remain consistent between the record-view and the grid.
procedure TRecordViewDemoForm.wwRecordViewDialog1InitDialog(
 Form: TwwRecordViewForm);
begin

wwdbgrid1.GetActiveField.FocusControl;
end;

Attach your own custom menu to the record-view dialog
You can attach your own custom menu to the record-view dialog with the following steps.

1. Add a new TMainMenu component to your form and set the following properties.

Name=RecordViewMenu
Items=Your menu design

Chapter 5 - InfoPower Component Reference, TwwRecordViewDialog 285

2. Check the Menu property of your form and make sure it is not set to RecordViewMenu. If

it is then clear it.

3. Set the Menu property of your TwwRecordViewDialog to RecordViewMenu

See the demonstration program prcdvw.dpr for a complete example of using a custom menu in
the record-view dialog.

Customize the spacing between controls
The EditSpacing property allows you to fine-tune the edit-control spacing of your record-view
form to your preferences. See the property EditSpacing for details.

Defining the default behavior when the record-view form is closed
The default behavior of the record-view form is to post the record when the OK button is
clicked and to call the dataset’s cancel method when the Cancel button is clicked. If the user
closes the form using the control menu, then the record-view form treats this as a cancel
operation. If the user closes the form without saving the changes, the record-view form
displays a confirmation dialog. The following are common customizations you may wish to
make to change the default closing behavior.

• In cases where you do not have the OK and cancel buttons visible you may
want to set the Options | rvoCloseIsCancel to False. This treats closing
the form via the control menu equivalent to the OK button being clicked.

• If you do not want the form to automatically post the changes to the record
when the OK button is clicked, set the OKCancelOptions |
rvokAutoPostRec to False.

• If you do not want the form to automatically cancel the record’s changes
when the Cancel button is clicked, set the OKCancelOptions |
rvokAutoCancelRec to False.

• If you wish to use your own confirmation dialog when closing the form,
use the OnCancelWarning event.

Defining picture masks for fields in the record-view form
Click on the selected property and define the masks using the Masks tab page. Picture masks
are stored at the dataset level, so if you have already defined picture masks with another
control (such as the TwwDBGrid), you will not need to redefine them.

286 Chapter 5, InfoPower Component Reference , TwwRecordViewPanel

TwwRecordViewPanel

 This InfoPower component provides a convenient way to view or edit a record's
contents. Similar in functionality to the TwwRecordViewDialog, this component differs in
that the record-view can be embedded on your own form instead of a pop-up dialog. The edit
controls are constructed during program execution to allow the panel to adapt itself to any
table. Thus with just a few lines of code, you can have a generic form that can edit or view
any table.
InfoPower's RecordViewPanel supports embedded controls, picture masks, horizontal or
vertical display, and detailed display options.

Figure 5.25 - InfoPower’s TwwRecordViewPanel component with horizontal view

Required supporting components
TDataSource.

Added Properties

ControlInfoInDataset
Set this property to False if you wish for the record view panel to store the information about
the embedded controls into its ControlType property . You may wish to set this property to
False if you want the record view panel to have no dependency upon the embedded control
information stored in the dataset. By default this property is True, which means that
information about the embedded controls is stored in the related TDataSet.

Notes: Normally you will want to leave this property as True. Set this property to False if you
have more than one IP container control such as a grid or record-view attached to the same
dataset, and do not wish for them to share the same custom control.

ControlOptions
This property contains a set of Boolean values that control the display of embedded controls.
Data Type: Set of TwwRecordViewControlOption
Valid Values: rvcTransparentLabels, rvcTransparentButtons, rvcFlatButtons

Chapter 5 - InfoPower Component Reference, TwwRecordViewPanel 287

rvcTransparentLabels If True, then the labels in the TwwRecordViewDialog will be

transparent. This is useful when you have a background image
being used in the dialog. This property defaults to True.

rvcTransparentButtons If True, then controls with buttons in the dialog will have their
buttons be displayed transparently.

rvcFlatButtons If True, then controls with buttons in the dialog will have their
buttons be displayed as flat.

ControlType
This property is equivalent to the ControlType property (See TwwTable ControlType).
InfoPower stores the control information into this property if the ControlInfoInDataSet
property is False. Otherwise this property is not used.

DataSource
This property contains the name of a TDataSource component that provides the record view
form with data. The default value is blank.
Data Type: TDataSource

EditFrame
See the topic “Key properties and events for custom framing” in chapter 4 for information on
this property. Set the EditFrame property to customize how the contained edit control’s
borders and background are painted. For instance, set the EditFrame.Enabled and
EditFrame.Transparent properties to True to display the edit controls transparently. See also
the OnSetControlEffects to individually customize the borders of a control.
Data Type: TwwEditFrame

EditSpacing | HorizontalView
This property defines the spacing values for the controls in the record view form when using
Style=rvsHorizontal

BetweenEditsInRow Horizontal Space between the edit controls
Data Type: Integer

BetweenLabelEdit Vertical Space between the label and the related edit control
Data Type: Integer

BetweenRow Vertical Space between the edit control and the top of the label on
the next row.
Data Type: Integer

LabelIndent Horizontal indentation of label with respect to its related edit

control
Data Type: Integer

288 Chapter 5, InfoPower Component Reference , TwwRecordViewPanel

EditSpacing | VerticalView
This property defines the spacing values for the controls in the record view form when using
Style=rvsVertical

BetweenLabelEdit Horizontal Space between the label and the related edit control
Data Type: Integer

BetweenRow Vertical Space between the edit controls

Data Type: Integer

Font
This is the standard Delphi Font property that allows you to define the font and its attributes
used to display the controls in the record-view panel. See also the LabelFont property.
Data Type: TFont
Valid Values: Standard Delphi Font options

LabelFont
This is the standard Delphi Font property that allows you to define the font and its attributes
used to display the labels in the record-view form. See also the Font property.
Data Type: TFont
Valid Values: Standard Delphi Font options

LinesPerMemoControl
This property determines the height of memo controls in the panel. The default is 2 lines per
memo control.
Data Type: integer

Margin
Space between panel and controls.

BottomOffset Space between the bottom edit control and the bottom of the record-
view panel
Data Type: Integer

LeftOffset Space between the left-most edit control and the left side of the
record-view panel
Data Type: Integer

RightOffset Space between the right-most edit control and the right side of the
record-view panel.
Data Type: Integer

TopOffset Space between the top edit control and the top of the record-view
panel
Data Type: Integer

Options
This property contains a set of Boolean values that control options in the record-view form.
Data Type: Set of TwwRecordViewOption

Chapter 5 - InfoPower Component Reference, TwwRecordViewPanel 289

Valid Values: (rvopHideReadOnly, rvopHideCalculated,
rvopUseCustomControls, rvopShortenEditBox,
rvopConsistentEditWidth, rvopMaximizeMemoWidth,
rvopUseDateTimePicker, rvopLabelsBeneathControl)

rvopHideReadOnly If True, then readonly fields are not displayed in the
record-view form. Defaults to False.

rvopHideCalculated If True, then calculated fields are not displayed in the
record-view form. Defaults to False.

rvopUseCustomControls If True, then embedded controls are used by the record-
view form. If False, then the fields use a regular edit
control for editing. Defaults to True.

rvopShortenEditBox If True, then edit controls that exceed the width of the
record-view form are resized to fit into the form. Defaults
to True.

rvopConsistentEditWidth If True, then edit controls are all the same size. This
property is only used when the Style=rvpsVertical.
Defaults to False.

rvoMaximizeMemoWidth If True, then the record-view form will maximize the width
of the memofields by placing their related edit control on
their own row, and be sized to fit the entire width of the
form. If False, then the design time settings are used.

rvopUseDateTimePicker If True, then the record-view panel will automatically
create and use the TwwDBDateTimePicker control to edit
dates or time fields.

rvopLabelsBeneathControl If True, then the record-view will place the labels
underneath the control. This property is ignored if Style is
rvsHorizontal.

PictureMaskFromDataSet
This property is only relevant if your datasource is attached to a TwwTable, TwwQuery,
TwwQBE, or TwwClientDataset component, as it is always treated as false in other cases.

When customizing the picture masks through the select fields dialog (invoked by clicking on
the selected property at design time), the mask information is stored in the related dataset if
this property is True. Otherwise the mask information is stored as a property in the related
visual component. By storing the mask information in the dataset, you do not need to re-enter
the picture mask for other visual controls attached to this same database field.
Data Type: boolean

PictureMasks
The assigned picture mask information is stored in this property if PictureMaskFromDataset is
false. See the PictureMaskFromDataSet property.
Data Type: TStrings

290 Chapter 5, InfoPower Component Reference , TwwRecordViewPanel

ReadOnlyColor
This property determines the color of the read-only fields in the record-view form. Defaults to
clInactiveCaptionText.
Data Type: TColor

Selected
This property determines the field layout of the record-view panel. It determines the field
order, the display labels, and the edit control width. Clicking in this property brings up a
specialized form of the Select Fields Dialog, which allows line-breaks to be inserted. You can
insert line breaks by clicking on the icon.

Using this dialog you can set picture masks, attach edit controls, select fields, etc. See Using
the Select Fields Dialog Box at the beginning of Chapter 4.) The default value is all fields
selected.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

Style
This property determines the style of the record-view panel’s field display. If set to
rvpsHorizontal, then each succeeding field is displayed on the same line until it reaches the
right edge of the panel. You can force line-breaks using the Selected property. If set to
rvpsVertical, then only one field is displayed per line.
Data Type: TwwRecordViewPanelStyle
Valid Values: rvpsHorizontal, rvpsVertical

Required property assignments
DataSource

Added Events

OnAfterCreateControl
This event allows you to customize the edit control after the record-view form has created the
control.

Note : Embedded controls on the record-view form can be customized outside the scope of this
event since the control already exists before the record-view form is shown. However normal
edit controls do not exist until the record-view form is shown, and thus to customize you will
need to use this event.

The parameters for this event are as follows.

Sender : TObject Record-view Panel

CurField: TField Field that is related to the edit control

Chapter 5 - InfoPower Component Reference, TwwRecordViewPanel 291

Control: TControl Control to customize

Example: The following example changes the field ‘Last Name’ so that it’s color is clYellow.
procedure TForm1.wwRecordViewPanel1AfterCreateControl(
 Sender: TObject; curField: TField; Control: TControl);
begin
 if (curField.FieldName='Last Name') and
 (Control is TCustomEdit) then TEdit(Control).Color:= clYellow;
end;

OnBeforeCreateControl
This event allows you to evaluate the control about to be created and either accept or reject its
placement into the record-view form.

The parameters for this event are as follows.

Sender: TObject Record-View Panel

CurField: TField Field that is related to the edit control

Accept: boolean Set to false to reject the component. Defaults to True.

Example: The following example will reject the last name field from being included in the
record-view panel. Note: You can also remove a field at design time by clicking in the
selected property. However if the fields that are to be included are not known until runtime,
then you can resort to this technique to remove fields.

procedure TForm1.wwRecordViewPanel1BeforeCreateControl(
 Sender: TObject; curField: TField; var Accept: Boolean);
begin
 if curField.FieldName='Last Name' then Accept:= False;
end;

OnSetControlEffects
Use the OnSetControlEffects event to override the RecordView's EditFrame settings for an
individual or selected control. See the TwwRecordViewDialog OnSetControlEffects event for
further information.

How To

Customize the selection and order of fields in the record-view form
Click on the selected property to invoke the Select Fields Dialog. From here you can select
which fields should be visible in the record view, as well as determine the order of fields. You
can also force line breaks when using style=rvpsHorizontal by inserting a <New line>.

Create accelerators for the controls in the record-view form
Click on the selected property to invoke the Select Fields Dialog. From here you can select
the field title. Use the & symbol in the title of the field to create an accelerator in the record-
view form for the field. For instance if the field title was &Last Name, then the field label
would appear as Last Name, and entering Alt | L would move to that control.

292 Chapter 5, InfoPower Component Reference , TwwRecordViewPanel

Embed custom controls in the record-view panel
The record-view panel is capable of displaying fields as CheckBoxes, SpinEdits, ComboDlgs,
ComboBoxes, Memo fields, DateTimePickers, RichEdit fields, and LookupCombos. The
control information is stored at the dataset level, so if you already have attached controls to the
dataset using another component such as the TwwDBGrid you may not need to redefine this
control information. However if your grid’s embedded controls are not on the same form as
the record view panel, the record-view panel will not find the embedded controls. In this case
you should set the ControlInfoInDataset property to False, and attach new custom controls to
the record-view panel. To define the control information, click on the selected property and
select the Edit Control tab page. See using the Select Fields Dialog for more information on
embedding controls.

Warning: You cannot attach the same custom control to multiple fields. For instance if you
want to use the same drop-down list for Field1 and Field2, you should use 2 separate
TwwDBComboBox’s. This is necessary since both comboboxes would need to be visible at the
same time within the record-view form.

Customize the spacing between controls
The EditSpacing property allows you to fine-tune the edit-control spacing of your record-view
form to your preferences. See the property EditSpacing for details.

Chapter 5 - InfoPower Component Reference, TwwSearchDialog 293

TwwSearchDialog

 TwwSearchDialog is a highly functional incremental search dialog box component
that provides your end-users with a means to incrementally search for values against any of the
table’s index fields you allow the user to select. The dialog box includes a developer-controlled
table grid, search criteria edit box and optionally displays a combo box containing the table’s
indexes you allow the user to select from. Any of the fields available in the associated search
table can be selected for display in the table grid, regardless if the field is displayed on your
form or not. You can enable up to two optional developer-controlled buttons in this dialog box
and define what actions take place when the user clicks on either button.

Call the component’s Execute method to bring up the search dialog. You can customize which
fields are shown in the dialog by dbl-clicking the component at design time.

Assign the SearchTable property to define which dataset to search. You can optionally assign
the ShadowSearchTable property s well if you wish to prevent the searching process from
changing the dataset record pointer.

If you are not using a searching on a TTable component and you are using a
ShadowSearchTable, you must write code in the OnSyncDataSet event to synchronize the
record pointers in your SearchTable and ShadowSearchTable. See the OnSyncDataSet event
for more information.

Just like the TwwIncrementalSearch component, as the end-user enters characters into the edit
box, the component performs a “locate index value” operation based on the characters
currently in the edit box, moving to the record that contains the closest match. (If you are
using SQL tables and TwwTables, refer to the TwwTable component’s SyncSQLByRange
property and also the SQL entries in the Troubleshooting section for some very useful
information that will assist you in working with SQL tables and InfoPower.)

The current search field is always located in the first column of the grid display. When the
first column is fixed, it is non-scrollable, cannot be resized by the user, and is displayed using
the same colors as the column heading titles (TitleColor property). The remainder of the grid
is displayed in the color specified in the GridColor property. If the user is allowed to change
the Search By field, the selected field is automatically moved to the first column of the grid
display

Ancestor
TComponent
 └─TwwCustomDialog
 └─TwwCustomLookupDialog

294 Chapter 5, InfoPower Component Reference , TwwSearchDialog

 Figure 5.26 - An example TwwSearchDialog box in action, where the user
 has already selected one of the table’s secondary Indexes (CompanyName)
 and entered the Search Characters “Woll2”. Optional developer-defined
 buttons are also shown along with the opShowStatusBar option set to True.

Required supporting components
At least one TwwTable component—two TwwTable components if a shadow table is used.

Added Properties

Caption
This property contains a text value that is displayed in the search dialog box’s title bar. The
default value is “Search”.
Data Type: String

CharCase
This property defines what case the characters typed in by the user are to take. ecLowerCase
converts all characters to lower case. ecNormal allows the user to type both upper and lower
case characters. ecUpperCase converts all characters to upper case. The default value is
ecNormal.
Data Type: Constant
Valid Values: ecLowerCase, ecNormal, ecUpperCase

GridColor
This property defines the background color of the grid. The default value is clWhite. (When
one or more columns of a grid are fixed, their colors are the same colors used for the grid’s
column headings defined by TitleColor.)
Data Type: TColor

Chapter 5 - InfoPower Component Reference, TwwSearchDialog 295

GridOptions
This property contains a set of standard Delphi grid options.
Data Type: TSet()
Valid Values: Valid Delphi grid options

GridTitleAlignment
Determines the text alignment of titles in popup-dialog's grid. The default value is
taLeftJustify.
Data Type: Constant
Valid Values: taCenter, taLeftJustify or taRightJustify

MaxHeight
Defines the maximum Height of the grid in the related dialog. Use this property to control the
height of the popup-dialog. The default value for a standard VGA display (640 x 480) is 209.
Data Type: Integer
Valid Values: Positive integer value

MaxWidth
This property defines how wide the dialog box is allowed to grow, in pixels. The default value
is 0, which allows the dialog box to grow to the entire width of the screen.
Data Type: Integer
Valid Values: Depends on your screen’s display resolution

Options
This property contains a set of Boolean values that control the appearance of the dialog box.
See the TwwLookupDialog Options property for a detailed description.
Data Type: TSet()
Valid Values: opShowOK, opShowSearchBy, opGroupControls, opFixFirstColumn and
opShowStatusBar

PictureMaskFromDataSet
This property is only relevant if your datasource is attached to a TwwTable, TwwQuery,
TwwQBE, or TwwClientDataset component, as it is always treated as false in other cases.

When customizing the picture masks through the select fields dialog (invoked by clicking on
the selected property at design time), the mask information is stored in the related dataset if
this property is True. Otherwise the mask information is stored as a property in the related
visual component. By storing the mask information in the dataset, you do not need to re-enter
the picture mask for other visual controls attached to this same database field.
Data Type: boolean

PictureMaskFromField
Setting this property to True will allow the dialog to automatically use the picture mask
defined for the database field when the end-user is entering the text to search for.

296 Chapter 5, InfoPower Component Reference , TwwSearchDialog

Data Type: Boolean

PictureMasks
The assigned picture mask information is stored in this property if PictureMaskFromDataset is
false. See the PictureMaskFromDataSet property.
Data Type: TStrings

SearchTable
This property defines the TDataSet component that the search should use for synchronization
(the table used to retrieve data displayed to the user). The ShadowSearchTable property,
described below, is the TDataSet component used internally to actually perform the search
operation.

Using a different table component internally allows you to select the fields to be displayed in
the grid along with allowing your end-users to navigate within the SearchDialog grid and even
Cancel the search operation. All without affecting the visual interface component’s record
position. The default value is blank.
Data Type: TDataSet

Selected
Clicking the “...” button or double-clicking the SearchDialog component displays the Select
Fields dialog box. This dialog box allows you to select the fields you want displayed in the
grid, their titles, widths, control types and link information. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) The default value is all fields selected, using the
field name as it’s title, displayed as a Field control for a width equal to the number of
characters in the field or the title, whichever is longer.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

ShadowSearchTable
Optional This property defines the TDataSet component to be used internally by the
SearchDialog component. If not specified then all navigational operations are applied directly
to the table specified in the SearchTable property, as well as all field selections originating
from the SearchTable. This should be a different TwwTable component than the one specified
in SearchTable, but still point to the same physical table.

Using a different table component internally allows the developer to select the fields displayed
in the grid, along with allowing the user to navigate within the SearchDialog grid and even
Cancel the search operation without affecting the visual interface component’s record position.
The default value is blank.
Data Type: TDataSet

Tag
This is the standard Delphi Tag property that you can use for your own internal processing
needs. The default value is 0.

Chapter 5 - InfoPower Component Reference, TwwSearchDialog 297

Data Type: Long

UserButton1Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton1Click event. The default value is blank.
Data Type: String
Valid Values: Any text value that fits within the width of the button.

UserButton2Caption
When you want to display this button on the dialog box, enter the caption text for the button
here and then add code to the OnUserButton2Click event. The default value is blank.
Data Type: String
Valid Values: Any text value that fits within the width of the button.

UseTFields
When the UseTFields property is set to true the Selected property’s display settings are stored
and retrieved from the ShadowSearchTable or the SearchTable. When it is set to False the
Selected property’s display settings are stored with the TwwSearchDialog.
The default is True.
Data Type: Boolean

Modified properties
None.

Required property assignments
SearchTable

Added Events
Some of the following events pass a handle to the form containing all of the components of the
dialog. To see what objects are contained within this editing form, open up wwidlg.pas in the
InfoPower source sub-directory. If you do not have the source code version of InfoPower, then
perform the steps in Chapter 4's topic "Determining the object names of the controls contained
in an InfoPower dialog" on the wwidlg.dfm file contained in the InfoPower lib directory.

If you want to customize any of the objects contained by the form you can use the OnInitDialog
event. However if all you are trying to do is to change the labels and hints, then use the
TwwIntl | SearchDialog property.

OnInitDialog
Allows you to completely customize every aspect of the dialog box or perform some action
during the initialization of the dialog box. When using this event, your code must reference

298 Chapter 5, InfoPower Component Reference , TwwSearchDialog

wwidlg in your source file’s Uses clause. This gives you access to all the components in the
dialog. For example, you can modify the grid's properties, define custom events, etc.

Example: The following code tells the first user-defined button to show a hint when the user
moves the mouse pointer over the button:

procedure TForm1.wwDBLookupComboDlg1InitDialog(
 Dialog: TwwLookupDlg);
begin
 Dialog.UserButton1.Hint := 'Hint for user button 1';
 Dialog.UserButton1.ShowHint := True;
end;

OnCloseDialog
This event allows you to perform any custom action before the dialog is actually closed.

OnPerformCustomSearch
When using a large dataset from a remote server, the performance of the dialog’s incremental
searching can significantly degrade. To resolve this issue, InfoPower adds a new event where
you can control the specific action that takes place after the user types a character, or when the
control needs to look up a value. In particular the custom action can update the query to only
return the records that you are interested in. When using this event, your code is responsible
for manipulating the lookuptable based on the parameter values passed in. See the
TwwDBLookupCombo OnPerformCustomSearch event for a description of the events
parameters.

OnSortChange
If you want to perform some custom action when the end-user makes a selection from the
SortBy combo, then place your custom code here.

OnSyncDataSets
Use this event to synchronize the search table and shadow table to point to the same record.
When using TwwTable components, synchronization is automatically performed. However
when using other TDataSet components, you must attach code to this event to perform the
synchronization. The parameters for this event are as follows.

Sender: TObject TwwSearchDialog associated with event

MoveDataSet: TDataSet DataSet that needs to be synchronized with the BaseDataSet

BaseDataSet : TDataSet DataSet that the MoveDataSet needs to move to.

Example: The following example synchronizes the datasets used by the SearchDialog when
going against an TADOTable component. In this example OrderID is a unique field in the
table.

procedure TForm1.wwSearchDialog1SyncDataSets(Sender: TObject;
 MoveDataSet,
 BaseDataSet: TDataSet);
begin

Chapter 5 - InfoPower Component Reference, TwwSearchDialog 299

 TADOTable(MoveDataSet).Locate('OrderID',
 TADOTable(BaseDataSet).FieldByName('OrderID').asString, []);
end;

OnUserButton1Click
When you want to display developer-defined button #1 on the dialog box, enter the caption
text for the button in the UserButton1Caption property and then add code to this event that
will be executed when the end-user clicks the button.

OnUserButton2Click
When you want to display developer-defined button #2 on the dialog box, enter the caption
text for the button in the UserButton2Caption property and then add code to this event that
will be executed when the end-user clicks the button.

Added Methods

Execute
Display the search dialog box to the end-user. False is returned if the user clicks the Cancel
button or the user closes the dialog box via the control menu

How To

Use the SearchDialog with non-TTable components
See the example under the OnSyncDataSets event.

Use ADOTables with the SearchDialog.
To initialize the default value of the search-by combo in the dialog, you will need to preset the
IndexFieldNames property of your ShadowSearchTable component. The SearchDialog will
automatically default to this field when it is displayed. In order for the SearchDialog to display
the sort-by control, you need to also set your TADOTable's CursorLocation property to
clUseClient.

Tips
♦ If you want to give your users some special functionality while the Search

dialog box is being displayed, define one or both of the optional developer-
defined buttons via the UserButton1Caption and UserButton2Caption
properties. Then define your actions via the OnUserButton1Click and
OnUserButton2Click events.

♦ If you are using SQL tables, refer to the TwwTable component’s
SyncSQLByRange property, and the SQL entries in the Troubleshooting
section, for some very useful information that will assist you in working with
SQL tables and InfoPower.

♦ If you have a choice use case insensitive indexes in your tables to make
incremental searching more user-friendly.

300 Chapter 5, InfoPower Component Reference , TwwSearchDialog

♦ If you are using the wwfilterdialog1 on the SearchTable and you wish the
ShadowSearchTable to be filtered the same, then on the OnInitDialog event
of the TwwSearchDialog you should put in the following code:

procedure TForm1.wwSearchDialog1InitDialog(
 Dialog: TwwLookupDlg);
begin
 wwSearchDialog1.ShadowSearchTable.OnFilter :=
 wwSearchDialog1.SearchTable.OnFilter;
end;

Chapter 5 - InfoPower Component Reference, TwwStoredProc 301

TwwStoredProc

 The non-visual TwwStoredProc component allows you to execute server stored
procedures. Stored procedures can return either a singleton result or a multiple row result set
to one or more of the other InfoPower visual interface components placed on your form.

Since InfoPower 2000, you can safely use the native TStoredProc instead of
TwwStoredProc.Since InfoPower’s TwwStoredProc component is inherited from Delphi’s
TStoredProc component, all standard Delphi component properties and functionality are still
available, such as Delphi’s built-in Fields editor and the Parameters Editor.

Ancestor
TStoredProc.

Required supporting components
None.

Added Properties

ControlType
This property holds information about the type of control used to display a field if the field is
contained within a grid component. The default value is Field. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) To change this property at runtime, see the
SetControlType method of the wwDBGrid component.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

LookupFields
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

LookupLinks
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

OnFilterOptions
See the documentation for OnFilter under the TwwTable component

302 Chapter 5, InfoPower Component Reference , TwwStoredProc

PictureMasks
This property holds information about a field’s picture mask. See Using InfoPower’s Picture
Masks in Chapter 4 for more details.
Data Type: TStrings
Valid Values: (Internal to InfoPower)

ValidateWithMask
See the documentation for ValidateWithMask under the TwwTable component

Modified properties
None.

Required property assignments
1) DataSource or DatabaseName, and 2) StoredProcName.

Added Events

OnFilter
See the documentation for OnFilter under the TwwTable component.

OnFilterEscape
See the documentation for OnFilterEscape under the TwwTable component.

OnInvalidValue
See Using InfoPower’s Picture Masks in chapter 4.

Added Methods

wwFilterField
See the documentation for wwFilterField under the TwwTable component

How To
The TwwStoredProc component is inherited from Delphi’s TStoredProc, so please refer to
your Delphi manual for more information about this component. Since InfoPower’s
TwwStoredProc component is inherited from Delphi’s TStoredProc component, you are
provided with 100% backward compatibility. Thus, you can safely replace your use of
TStoredProc with TwwStoredProc at any time.

Chapter 5 - InfoPower Component Reference, TwwTable 303

TwwTable

 The non-visual TwwTable component allows you to define the database table that
supplies data to one or more of the other InfoPower visual interface components placed on
your form. Since InfoPower’s TwwTable component is inherited from Delphi’s TTable
component, all standard Delphi component properties and functionality are still available,
such as double-clicking the component to invoke Delphi’s built-in Fields editor. All data
access for the TwwTable is still performed by the Delphi TTable.

Several properties, events and methods were added to TwwTable. For example, the Pack
method allows you to pack any Paradox or dBASE table by adding only a single line of code to
your program! InfoPower also includes picture masks at the table field level so invalid field
values will be detected before your records are posted.

Ancestor
TTable.

Required supporting components
None.

Added Properties

ControlType
This property holds information about the type of control used to display a field if the field is
contained within a grid component. The default value is Field. (See Using the Select Fields
Dialog Box at the beginning of Chapter 4.) To change this property at runtime, see the
SetControlType method of the wwDBGrid component.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

FilterCount
This property is maintained for backwards compatibility with earlier versions of InfoPower.
This property is identical to the RecordCount property.

LookupFields
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

304 Chapter 5, InfoPower Component Reference , TwwTable

LookupLinks
Maintained for backward compatibility with earlier versions of InfoPower.
Data Type: (Internal to InfoPower)
Valid Values: (Internal to InfoPower)

NarrowSearch
This property affects how InfoPower’s incremental searching is performed. When this property
is True, incremental searching will show only those entries that match what has been typed in
so far. For example, if the user types in the letter C, then all records starting with C are shown
and no other records. When the user enters another character, the search becomes even
narrower, or more specific.

When this property is False and using local tables, incremental searching moves to the record
that most closely matches the letters typed in. If this property is False and you are using SQL
tables, then incremental searching is dependent upon the SyncSQLByRange property setting.
The default value of this property is False. See also the NarrowSearchUpperChar property.
Note: When this property is True and you are using a TwwSearchDialog, you should use a
shadow table.
Data Type: Boolean

NarrowSearchUpperChar
This property is defines the behavior of linked field lookups on SQL tables, as well as the
behavior of the incremental searching with the NarrowSearch property set to True. You
should set this property to the highest ASCII value that your back-end recognizes.

In general you will never need to change this property unless your back-end does not
understand the ASCII value of 255 for its data values. SQL server does not recognize the
ASCII value of 255 in its SQL select statements, so you need to change this value to something
SQL server recognizes, such as 122 (ASCII value for ‘z’). The default value is 255.
Data Type: Word
Valid Values: Valid ASCII Ord value

OnFilterOptions
This property contains a set of boolean values that control the behavior of the onFilter event.
Data Type: set of TwwOnFilterOption;
Valid Values: ofoEnabled, ofoShowHourGlass, ofoCancelOnEscape

ofoEnabled When False, the onFilter callback is ignored.
ofoShowHourGlass When True, this property will enable the HourGlass cursor to

appear whenever an OnFilter is being applied on the dataset. For
example when the user is scrolling in a grid against a filtered
table, the hourglass will be displayed while the dataset is being
searched and return to an Arrow when the search is complete.

ofoCancelOnEscape When True, this property allows the end-user to cancel a filter that
is currently being applied. For instance if a filter is taking a long to

Chapter 5 - InfoPower Component Reference, TwwTable 305

be applied, the end-user can abort the process by entering the
<Esc> key. See also the OnFilterEscape event.

PictureMasks
This property holds information about a field’s picture mask. See Using InfoPower’s Picture
Masks in Chapter 4 for more details.
Data Type: TStrings
Valid Values: (Internal to InfoPower)

Query
This property is preserved for backward compatibility with earlier versions of InfoPower.
Previously this property was necessary if you wanted to fill a drop-down list from a query
result. Since IP 3000 supports TwwQuery for its LookupTable in its lookup components, you
should use the TwwQuery component instead of this property.
Data Type: TStrings
Valid Values: Any SQL or QBE query that produces a result set.

SyncSQLByRange
This property affects how InfoPower synchronizes two SQL tables and performs a an
incremental search when using the TwwSearchDialog, TwwLookupCombo, or
TwwIncrementalSearch. By default, SyncSQLByRange is False, which tells the search
components to use the Delphi Locate method, and the SearchDialog to use the GotoCurrent
method to synchronize two tables.

By setting SyncSQLByRange to True, you may experience much faster table-to-table
synchronization and incremental searching, even for very large tables , because ranges are
used for searching. However the navigating range of the applied table starts at the first
displayed record (the sync value), instead of at the first record in the table. Thus, you cannot
navigate or scroll backwards to a record before the first displayed record.

As a rule of thumb, set SyncSQLByRange to True when searching large tables.
Data Type: Boolean

ValidateWithMask
When True, assigned picture masks are used to validate field values before they are posted.
When False, this validation is skipped. You may want to set this property to False when using
the TField's OnGetText and OnSetText events to map the stored value to a different displayed
value.
Data Type: Boolean

wwFilter
Maintained for backwards compatibility with earlier versions of InfoPower. For expression
filtering see the Delphi Filter and Filtered properties.

306 Chapter 5, InfoPower Component Reference , TwwTable

Modified properties
None.

Required property assignments
DatabaseName and TableName.

Added Events

OnFilter
This event is executed for records in the related table which allows you to have practically
unlimited filtering capabilities. Via this callback filter function, you simply set the parameter
Accept to False if you want the record to be excluded. In addition, this event respects other
ranges and filters that might currently be set on the related table (i.e. SetRange method and
Filter property). You can also filter on InfoPower linked fields or Delphi’s lookupfields with
this event.

Parameters

Table : TwwTable Table being filtered

Accept: Boolean Set to False to exclude a record. Defaults to True.

Delphi has the event named OnFilterRecord, which has similar functionality. However
Delphi’s OnFilterRecord does not work with lookup fields or memo fields. We recommend
you use the OnFilter event if you need to filter on lookup or memo fields.
With the InfoPower OnFilter event, you can compare two database fields with each other (for
example: Field1 < Field2), do bitwise comparisons in fields, have filters dependent upon other
related tables, or anything else you can express in code. This event is most practical when used
against local tables (Paradox or dBASE) because when used against SQL tables, the back-end
database system is prevented from optimizing the filter, since every record is passed to this
event.

Disabling the onFilter event: You can disable a previously defined OnFilter event during
program execution by setting the table’s OnFilterOptions | ofoEnabled property to False. For
example:

wwtable1.onFilterOptions := wwtable1.onFilterOptions - [ofoEnabled];

Refreshing the filtered table: If you change a variable that your OnFilter event depends
upon, then you should also call the table’s refresh method. In general, call the table’s refresh
method to force the OnFilter to be re-processed.

Allowing the end-user to cancel a filter in progress: By setting the onFilterOptions |
ofoCancelOnEscape property to True, the end-user can cancel a filter in progress by entering
the <ESC> key. You can also display an informational message after the filter has been
cancelled by using the onFilterEscape event.

Chapter 5 - InfoPower Component Reference, TwwTable 307

Notes: The related wwFilterField method should be used to extract the contents of the fields
you use. Do not use the FieldByName method to access the field data within this event because
it will not contain the correct data while this event is being executed.

Example 1: The following example performs a pattern search. The code shows only the
records that contain the string 'System' in the "Company Name" field:

procedure TForm1.wwTable1Filter(table: TwwQBE; var Accept: Boolean);
begin
 with table do
 accept := pos('System',wwFilterField('Company Name').AsString) <> 0;
end;

Example 2: The following example shows all records that have an odd number for their
Customer No.:

procedure TForm1.wwTable1Filter(table: TwwTable; var Accept: boolean)
begin
 with table do
 accept := odd(wwFilterField('Customer No').AsInteger);
end;

Example 3: The following example shows all employees who started a job and quit before 30
days had elapsed:

procedure TForm1.wwTable1Filter(table: TwwTable; var Accept: boolean):
begin
 with table do
 accept := wwFilterField('DateStartedJob').AsDate
 - wwFilterField('DateQuitJob').AsDate > 30
end;

OnFilterEscape
This event is fired after the end-user has cancelled a filter in progress by pressing the <Esc>
key. You may wish to use this event to display an informational message to the user so that
they are aware they have cancelled the filter. See also the onFilter event.

OnInvalidValue
See Using InfoPower’s Picture Masks in chapter 4.

Added Methods

FilterActivate
Maintained for backward compatibility with earlier versions of InfoPower. For expression
filtering see the Delphi Filter and Filtered properties.

Pack
Allows you to pack both Paradox and dBASE tables interactively from within your program.
The function definition is:

Function Pack(var statusMsg: string): Boolean;

308 Chapter 5, InfoPower Component Reference , TwwTable

Example: The following source code example demonstrates how to pack the table defined in a
TwwTable component named InvoiceTable...

String rtnMsg;

if not InvoiceTable.Pack(rtnMsg) then
 {Your error processing code goes here...}
 MessageDlg('Pack failed with message: '+rtnMsg+'.',mtError,[mbOK],0);

RefreshLinks
Maintained for backward compatibility.

SetLookupField
This method allows you to update lookup fields in the InfoPower grid.

Function SetLookupField(Field: TField): boolean;

This method should be called in the lookup TField.OnChange event to provide an updateable 1
to 1 relationship. You will also need to set the Grid’s EditCalculated property to True so that
the grid will allow edits in the lookup field. See the example in the TwwDBGrid how-to
section, under editing a Lookup Field.

wwFilterField
This method must be used only during processing of the OnFilter event. wwFilterField returns
the contents of any field, contained in the currently filtered record, in the format you specify
via the following properties:

 Rtn Value
Property Return Value Data Type

AsBoolean Field's contents as a boolean Boolean

AsFloat Field's contents as a float Double

AsInteger Field's contents as an integer LongInt

AsString Field's contents as a Pascal string String

AsDate Date portion of the field's value TDateTime

AsTime Time portion of the field's value TDateTime

AsDateTime Field's value as a TDateTime TDateTime

AsCurrency Field 's value as currency Double

IsNull True if the field is Null Boolean

Example: Please refer to the OnFilter event examples.

Chapter 5 - InfoPower Component Reference, TwwTable 309

wwFindKey
Maintained for backwards compatibility. Use the Delphi FindKey method instead.

How To

Performing case-insensitive filters, or substring filters.
If you need this ability then you should use the TwwTableOnFilter event. Similarly, use the
onFilter event if you need your filter to search on a substring anywhere in the field

Partially simulate the Paradox “..” wildcard characters in a filter criteria:
See example 1 in the onFilter event documentation.

Tips
♦ To extract only specific fields from the table, double-click the TwwTable

component to invoke the Delphi Fields editor and select only those fields you
want to extract.

♦ To change the display order of records associated with this table, use the
IndexName property to select a valid secondary index. For SQL servers, use
the IndexFieldNames property. Records are now displayed in the order of the
Index you chose.

♦ To modify field-level properties that are not included in the Select Fields
dialog box, such as alignment, display format, edit mask, etc., use the Object
Inspector. If the field is not listed in the Object Inspector, select it via
Delphi’s Fields editor window (double-click the TwwTable component).

By default all fields in a table are selected for retrieval, but they are not listed
in the Object Inspector where you can modify their properties. To add all
fields to the Object Inspector, click the Add button of the Fields editor, make
sure all fields are highlighted and then click the OK button. You will now be
able to select an individual field in the Object Inspector and modify its
properties.

♦ Since InfoPower’s TwwTable component is a direct descendent of Delphi’s
TTable component, you are provided with 100% backward compatibility.
Thus, you can safely replace your use of TTable with TwwTable at any time.

Troubleshooting 311

 C h a p t e r

6

Troubleshooting
We recommend you visit our newsgroups at http://www.woll2woll.com, as the newsgroup
contains thousands of messages discussing InfoPower, getting the most out of InfoPower,
and troubleshooting InfoPower. Also be sure to check the useful sites at
http://www.tamaracka.com/search.htm and http://www.mers.com/searchsite.html, as it
contains a database of InfoPower newsgroup threads that provide useful tips and solutions.

This chapter provides troubleshooting assistance when you are having problems working
with specific InfoPower components. Please check through this list before calling our
technical support department because it could save you some time and the cost of a long-
distance phone call. Components in this section are listed in alphabetical order.

General
♦ Problem: I am getting some consistent unexplainable GPFs or system

crashes when I run my application.
Solution: Make sure your project stack size is sufficiently high. We
deem Delphi's 16K default to be inadequate in most cases and strongly
recommend that you raise this value to 24K (6000 Hex).

Options | Project | Linker | Min Stack Size 0x00006000

SQL Tables - Performance
♦ Problem: When using a TwwSearchDialog, TwwLookupDialog or a

TwwDBLookupComboDlg component, it’s taking a long time to open
the dialog and a long time to return from the dialog.
Solution: Set the TwwTable’s SyncSQLByRange property to True. When
False, table synchronization on large SQL tables is very slow. See SQL
Tables - Navigating below for more details about this property.

312 Troubleshooting

SQL Tables - Navigating/Backward scrolling
♦ Problem: After locating a record via the TwwSearchDialog,

TwwIncrementalSearch, or TwwDBLookupCombo, I’m not allowed to
scroll back to prior records or use the TDBNavigator to move to prior
records.
Solution: If the TwwTable’s SyncSQLByRange property is True, SQL
table synchronization will move to the selected record by using the
TwwTable’s SetRange method. This allows for very fast SQL table
synchronization, but you cannot scroll backwards to a record prior to the
first one located. If you really need the ability to move to prior records,
set the SyncSQLByRange property to False. However, be aware that SQL
table synchronization will become quite slow.

SQL Tables - When using a TwwDBGrid
♦ Problem: My TwwDBGrid’s display attributes seem to get reset

whenever I run the program.
Solution: Set your Grid’s UseTFields property to False

TwwDBGrid
♦ Problem: I added a TwwDBLookupCombo to my grid. When the

LookupCombo is active (currently selected cell), it displays the correct
data from the lookup table, but the rest of the rows in the grid (non-
active) display the lookup value instead. How do I get the grid to display
the field from the other table in all the rows and not just for the row
where the LookupCombo is active.
Solution: Define a Delphi lookup field as described in the Delphi
documentation, and then bind your lookupcombo control to this
lookupfield column.

♦ Problem: During program execution I am assigning the DataSet
property of a TDataSource. However after I assign the datasource, the
related TwwDBGrid seems to have lost most of its fields.
Solution: Before assigning the DataSet property of the TDataSource,
first clear the grid’s selected property. The grid then will automatically
display the visible fields of the NewTable.

wwDBGrid1.Selected.Clear;
wwDBGrid1.DataSource.DataSet := NewTable;

TwwDBLookupCombo
♦ Problem: The drop-down list does not seem to be able to scroll

backwards when going against SQL or ODBC tables.
Solution: Change your lookuptable’s SyncSQLByRange property to
False. See the documentation for SyncSQLByRange for more details.

Troubleshooting 313

♦ Problem: No data is being displayed in the drop-down list.
Solution: Select the fields to be displayed by using the Select Fields
dialog box—click the “...” button in the Selected property (refer to Using
the Select Fields Dialog Box at the beginning of Chapter 4 for details
about using this dialog box).

TwwKeyCombo
♦ Problem: I’m getting a “DataSource cannot be a child table” Warning

box.
Solution: It’s telling you that the DataSource property of this component
is trying to reference a child table of a Master/Child relationship, which
is not legal. You can assign a TwwKeyCombo’s DataSource only to a
Master table. If you get this error when using the SearchDialog or
LookupDialog you can avoid this problem by setting the property
Option | OpShowSearchBy to False.

♦ Problem: The TwwKeyCombo component appears to only display
indexes based on fields that are currently set to 'Visible = True'. I
regularly combine several fields into a single calculated field for display
in a grid and make the original fields invisible.
Solution: You can add indexes that InfoPower didn't choose by
overriding the OnEnter event and adding all other fields the user should
be able to select the index for. For example, the following code adds the
index associated with the field 'City' to wwKeyCombo1 and makes sure
that the index field is only added one time:

Procedure TIncrSearch.wwKeyCombo1Enter(Sender: TObject)
begin
 if (wwKeyCombo1.Items.IndexOf('City') < 0) then
 wwKeyCombo1.Items.Add('City');
end;

TwwIncrementalSearch
♦ Problem: When typing characters to be located, the value is not found,

even though I know it exists.
Solution: This component’s case sensitivity is dependent upon the table
index’s case sensitivity. If the index is defined as Case Sensitive, then
the user needs to enter case-sensitive characters, both upper and lower
case characters, in the exact order in which they appear in the value of
the index. For example, if the user wants to locate a value of “San Jose”
in the City field of their Customer table, they must enter an upper case
“S” and then a lower case “a” in order to locate “Sa”, and then continue
entering each character with its proper capitalization. To assist the user,
you may wish to assign a picture mask to the field so that the first letter
is automatically converted to uppercase

314 Troubleshooting

TwwSearchDialog
♦ Problem: I’m getting an error message telling me that a DataSource or

DataSet is required or that the DataSource has no DataSet.
Solution: Make sure you have placed two separate TwwTable
components on your form and assigned them to the SearchTable and
ShadowSearchTable properties, as described in the Added properties
section of this component.

TwwDBLookupComboDlg, TwwSearchDialog,
TwwLookupDialog

♦ Problem: I am trying to have the user button terminate the dialog.
Solution: Set the ModalResult in your user button to mrOK as in the
following.

(Sender as TForm).ModalResult := mrOK;

♦ Problem: When using the TwwSearchDialog, how can I access the
search text in order to be able to automatically (or by pressing one of the
user buttons) add a record to the lookup table based on that string.
Solution: Your code must reference wwidlg in your Uses clause. This
gives you access to all the SearchDialog's components. For instance the
following code shows the current text in the incremental search
component of the TwwSearchDialog.

procedure TSearchForm.wwSearchDialog1UserButton1Click(
Sender: TObject;

 LookupTable: TDataSet);
begin
 with (Sender as TwwLookupDlg) do
 ShowMessage(wwIncrementalSearch1.text);
end;

♦ Problem: I'm using TwwLookupDialog and the TwwSearchDialog and
can't find out how I can tell if the end-user clicked on OK or Cancel.
Solution: The dialog's execute method returns a Boolean (True or False).
True means the user clicked OK, and False means Cancel.

♦ Problem: When using the OnUserButton1Click event of the
TwwSearchDialog or TwwLookupDialog, how do I set the focus so it is
on a different control than the button.
Solution: You can access all the components in the TwwSearchDialog,
TwwLookupDialog, or TwwDBLookupComboDlg by doing the
following.
1. Include wwidlg in your uses clause
2. Cast the sender parameter as TwwLookupDlg

The following example uses UserButton1 to insert a new record into
the search table and then sets the focus to the grid in the related
wwSearchDialog.

Troubleshooting 315

procedure TGridDemo.wwSearchDialog1UserButton1Click(
Sender: TObject;

 LookupTable: TDataSet);
begin
 with Sender as TwwLookupDlg do begin
 LookupTable.insert;
 wwdbgrid1.setFocus;
 end
end;

For more information on the component names within the dialog, please
refer to the OnInitDialog event.

♦ Problem: I've been looking at the OnInitDialog method of the
TwwDBLookupComboDlg, TwwLookupDialog, and TwwSearchDialog,
but can't seem to find the right code to make the memo field in the
lookup grid shows.
Solution: The following example sets the MemoAttributes property of
the grid on the dialog so that memos appear in the pop-up search dialog.
First, add wwmemo to your form’s uses clause.
procedure TForm1.wwDBLookupComboDlg1InitDialog(
 Dialog: TwwLookupDlg);
var grid: TwwDBGrid;
begin
 grid := Dialog.wwDBGrid1;
 grid.MemoAttributes := grid.MemoAttributes + [mGridShow];
 grid.MemoAttributes := grid.MemoAttributes + [mDisableDialog];
end;

TwwTable
♦ Problem: I'm trying to use the Pack method, but keep getting the

message "Pack failed. Table is busy." even with the table's Active
property set to False. What else do I need to do?
Solution: Packing requires that the table's active property be False, so it
can gain exclusive access to the table. You will need to make sure that
the table’s active property is set to False at design time so that the Delphi
IDE does not open the table. Setting active to False at run-time isn't
equivalent, as the Delphi IDE itself may already have this table open.

♦ Problem: I'm currently running into a problem using GotoCurrent on
filtered tables, I'm getting the message 'no current record'.
Solution: No current record means that you are referencing a record that
no longer appears in the filtered table. Make sure you reference a record
that would be in the filtered table.

316 Index

Index

"

"Error creating cursor handle",
252

1

1stClass
advantages, 61
integration, 61

A

ActiveEdit property
TwwDataInspector, 54

ActiveItem property
TwwDataInspector, 54
TwwInspectorItem, 69

ActiveRecordColor property
TwwDataInspector, 59

ActiveRows property
TwwDataInspector, 54

Add method
TwwInspectorCollection,

71
TwwNavButtons, 177

Add property
example, 71

AddFieldInfo method
TwwFilterDialog, 219

AddInfoPowerDialogs
TwwNavButtons, 177

AddItem method
TwwDBComboBox, 86

ADO property
TwwIntl, 225

Alignment property
TwwCheckBox, 44, 45
TwwDBDateTimePicker

CalendarAttributes, 94
TwwInspectorItem, 73
TwwRadioButton, 255

All | Searched,
TwwFilterDialog, 206

AllowClearKey property
TwwDBComboBox, 81
TwwDBLookupCombo,

152
TwwDBLookupComboDlg,

162
TwwInspectorItem.PickList

, 76
AllowGrayed property

TwwCheckBox, 44
AllowInvalidExit property, 35
AlternatingRowColor property

TwwDataInspector, 59
AlternatingRowRegions

property
TwwDataInspector, 59

AlwaysTransparent property
TwwCheckBox, 45
TwwRadioButton, 255

AndChar property
TwwFilterDialog, 209

AnswerTable property
TwwQBE, 248

Appending to a rich edit, 191
AppendRichEditFrom

TwwDBRichEdit, 191
ApplyFilter method

TwwFilterDialog, 219
ApplyFrame

TwwController, 50
ApplyList method

TwwDBComboBox, 86, 88
ApplySelected method

TwwDBGrid, 136
attaching icon to indicator

button, 145
AutoDropDown property

TwwDBComboBox, 81
TwwDBLookupCombo,

152
TwwDBLookupComboDlg,

162
AutoEnableEdit property

TwwDBComboDlg, 90
AutoFill property

PictureMasks, 35
AutoFillDate property

TwwDBEdit, 99
AutoHideExpandButton

property
TwwExpandButton, 201

AutoShrink property
TwwExpandButton, 201

AutoSizeHeightAdjust
property
EditFrame, 23
Frame, 23

AutoSizeStyle,
TwwDBNavigator, 173

Auto-sizing columns
TwwDBGrid, 102

AutoURLDetect property
TwwDBRichEdit, 181

AuxiliaryTables property
TwwQBE, 249

B

BackgroundBitmap property
TwwDataInspector, 59

BackgroundDrawStyle
property
TwwDataInspector, 59

BackgroundOptions property
TwwDataInspector, 59

BeginUpdate method
TwwDataInspector, 67

BetweenEditsInRow property
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276

BetweenLabelEdit property
TwwRecordViewDialog,

263
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276

BetweenRow property
TwwRecordViewDialog,

263
TwwRecordViewPanel,

276, 277
Bitmap in grid, 30, 31
Bitmaps in a TwwDBRichEdit,

179
bitmaps in dialog buttons

TwwIntl, 227
bitmaps in grids, 148
BlankAsZero property

TwwQBE, 249
BorderStyle property

TwwRecordViewDialog,
262

Bottom margin
TwwDBRichEdit, 188

BottomOffset property
TwwRecordViewDialog,

264
TwwRecordViewPanel, 277

building custom packages in
Delphi 5, 14

button effects
Flat property, 25
key properties, 25
supporting components, 22
Transparent property, 25

ButtonAlignment property

Troubleshooting 317

TwwExpandButton, 201
ButtonEffects property

TwwController, 50
TwwDBComboBox, 81
TwwDBComboDlg, 90
TwwDBDateTimePicker,

94
TwwDBLookupCombo,

152
TwwKeyCombo, 229

ButtonFrame property
TwwRadioGroup, 258

ButtonGlyph property
TwwDBComboBox, 81
TwwDBComboDlg, 90
TwwDBDateTimePicker,

94
TwwDBLookupCombo,

152
ButtonOptions property

TwwDataInspector, 54
Buttons property,

TwwDBNavigator, 173
ButtonStyle property

TwwDBComboBox, 81
TwwDBComboDlg, 90
TwwDBDateTimePicker,

94
TwwDBLookupCombo,

152
TwwInspectorItem.PickList

, 76
ButtonWidth property

TwwDBComboBox, 81
TwwDBComboDlg, 91
TwwDBDateTimePicker,

94
TwwDBLookupCombo,

153
By Range, TwwFilterDialog,

206
By Value, TwwFilterDialog,

206

C

CalcCellCol property
TwwDBGrid, 108

CalcCellRow property
TwwDBGrid, 108

CalColors property
TwwDBMonthCalendar,

169
CalendarAttributes property

TwwDBDateTimePicker,
94

calling recordview from the
grid, 146

Cancel buttons

Setting the caption, 225
CanCut method

TwwDBRichEdit, 191
CanFindNext method

TwwDBRichEdit, 191
CanPaste method

TwwDBRichEdit, 191
CanRedo method

TwwDBRichEdit, 191
CanUndo method

TwwDBRichEdit, 191
Canvas property

TwwDataInspector, 55
Caption property

TwwCheckBox, 45
TwwDBLookupComboDlg,

162
TwwFilterDialog, 208
TwwInspectorItem, 73
TwwLocateDialog, 232
TwwLookupDialog, 236
TwwMemoDialog, 243
TwwNavButton, 174
TwwRadioButton, 255
TwwRecordViewDialog,

262
TwwSearchDialog, 283

CaptionColor property
TwwDataInspector, 54

CaptionFont property
TwwDataInspector, 55

CaptionIndent property
TwwDataInspector, 55

CaptionWidth property
TwwDataInspector, 55

carriage return to tabs, 147
Case insensitive filters

TwwTable, 296
CaseSensitive property

TwwLocateDialog, 232
cbStyleAuto, TwwIntl, 225
cbStyleCheckmark, TwwIntl,

225
cbStyleXmark, TwwIntl, 225
CellHeight property

TwwInspectorItem, 73
Changing a column’s width,

130
CharCase property

TwwLookupDialog, 236
TwwSearchDialog, 283

Checkbox in grid, 30
CheckBoxInGridStyle property

TwwIntl, 225
Checked property

TwwCheckBox, 45
TwwInspectorItem, 73
TwwRadioButton, 255

CheckNewFields property

TwwDBGrid IniAttributes,
115

Clear method
TwwIncrementalSearch,

224
TwwNavButtons, 177

ClearFilter method
TwwFilterDialog, 219

ClearHistory method
TwwDBComboBox, 86

ClearParams method
TwwQBE, 251

Click method
TwwNavButton, 177

client datasets, 48
CollapseGlyph,

TwwDataInspector, 54
color alternating rows in grid,

147
Color property

TwwDBDateTimePicker
CalendarAttributes, 94

Coloring of a grid cell
during editing, 36

Coloring of a TwwDBEdit
during editing, 36

Coloring the cells in a grid,
127

Coloring the titles in a grid,
127

column headings. See
TitleAlignment and
TitleColor properties

Column1Width property
TwwDBComboBox, 81

ColumnByName method
TwwDBGrid, 136

ColWidthsPixels property
TwwDBGrid, 108

Combo box
TwwDBComboBox, 80

Combo box dialog, 90
compatibility issues with

InfoPower 4, 12
Component Hierarchy, 15, 16,

17
component overview, 15
Connected property

TwwIntl, 225
ControlInfoInDataset

TwwDBGrid, 109
ControlInfoInDataset property

TwwRecordViewDialog,
262

TwwRecordViewDialog,
262

ControlInfoInDataSet property
TwwRecordViewPanel, 275

controller, 22, 50

318 Index

ControlOptions property
TwwRecordViewDialog,

262
TwwRecordViewPanel, 275

ControlType property
TwwClientDataSet, 48
TwwDBGrid, 109
TwwQBE, 249
TwwQuery, 253
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276
TwwStoredProc, 289
TwwTable, 291

CopyRichEditFromBlob
method
TwwDBRichEdit, 192

CopyRichEditTo method
TwwDBRichEdit, 192

CopyRichEditToBlob method
TwwDBRichEdit, 192

Count property
TwwNavButtons, 173

crashes, 299
custom control

within a grid, 144
Custom control in

grid or record-view, 30
custom framing

key properties and events,
22

properties, 22
recordviewdialog, 24
recordviewpanel, 24
supporting components, 22

custom framing and
transparency effects, 21

CustomControl property
TwwInspectorItem, 73

CustomControlAlwaysPaints
property
TwwInspectorItem, 74

CustomControlHighlight
property
TwwInspectorItem, 74

D

data inspector, 51
collection, 71
item, 73

data viewing order. See
TwwKeyCombo

DataField property
TwwDBDateTimePicker,

95
TwwDBLookupCombo,

156

TwwDBLookupComboDlg,
162

TwwDBMonthCalendar,
169

TwwDBRichEdit, 181, 182
TwwInspectorItem, 74
TwwMemoDialog, 243

DataSetFilterType property,
TwwFilterDialog, 211

DataSource cannot be a child
table, 301

DataSource property
TwwDataInspector, 55
TwwDBDateTimePicker,

95
TwwDBGrid, 109
TwwDBLookupCombo,

156
TwwDBLookupComboDlg,

162
TwwDBMonthCalendar,

169
TwwDBNavigator, 175
TwwExpandButton, 202
TwwFilterDialog, 208
TwwIncrementalSearch,

222
TwwInspectorItem, 74
TwwKeyCombo, 229
TwwLocateDialog, 232
TwwMemoDialog, 244
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276

Date property
TwwDBDateTimePicker,

95
TwwDBMonthCalendar,

169
Date time picker component,

93
DateFormat property

TwwDBDateTimePicker,
95

DBEdit. See TwwDBEdit
DBNavigator, 173
DefaultButton property

TwwLocateDialog, 232
DefaultEpochYear property

TwwIntl, 226
DefaultField property

TwwExpandButton, 202
TwwFilterDialog, 208

DefaultFilterBy property
TwwFilterDialog, 208

DefaultMatchType property
TwwFilterDialog, 209

DefaultRowHeight property
TwwDataInspector, 55

defining grid title attributes,
147

DeleteItem method
TwwDBComboBox, 86

deleting InfoPower. See
uninstalling InfoPower

Delimiter property
TwwDBGrid

ExportOptions, 111
TwwDBGrid IniAttributes,

115
Design Picture Mask dialog,

39
Detecting cell movement, grid,

149
Detecting row change, grid,

149
dgAllowDelete, TwwDBGrid,

118
dgAllowInsert, TwwDBGrid,

118
dgColLinesDisableFixed,

TwwDBGrid, 121
dgDblClickColSizing,

TwwDBGrid, 121
dgEnterToTab, TwwDBGrid,

118
dgFixedEditable, TwwDBGrid,

120
dgFixedProportionalResize,

TwwDBGrid, 121
dgFixedResizable,

TwwDBGrid, 120
dgFooter3DCells,

TwwDBGrid, 120
dgHideBottomDataLine,

TwwDBGrid, 121
dgMultiSelect, TwwDBGrid,

119
dgNoLimitColSize,

TwwDBGrid, 120
dgPerfectRowFit,

TwwDBGrid, 119
dgProportionalColResize,

TwwDBGrid, 120
dgRowLinesDisableFixed,

TwwDBGrid, 121
dgRowResize, TwwDBGrid,

120
dgShowCellHint,

TwwDBGrid, 120
dgShowFooter, TwwDBGrid,

120
dgTabExitsOnLastCol,

TwwDBGrid, 120
dgTrailingEllipsis,

TwwDBGrid, 120
dgWordWrap, TwwDBGrid,

119

Troubleshooting 319

dialog boxes
TwwDBComboDlg, 90
TwwDBLookupComboDlg,

161
TwwFilterDialog, 205
TwwLocateDialog, 231
TwwLookupDialog, 236
TwwMemoDialog, 243
TwwRecordViewDialog,

261
TwwSearchDialog, 282

Dialog property
TwwNavButton, 174

DialogFontStyle property
TwwIntl, 226

DisableDefaultEditor property
TwwInspectorItem, 74

DisableDropDownList
property
TwwDBComboBox, 82

DisableThemes, 41
DisableThemes property

TwwCheckBox, 45
TwwDataInspector, 55
TwwDBComboBox, 82
TwwDBDateTimePicker,

95
TwwDBEdit, 99
TwwDBGrid, 109
TwwDBLookupCombo,

153
DisableThemesInTitle property

TwwDBGrid, 109
Display Attributes

Select Fields dialog box, 28
display order. See

TwwKeyCombo
DisplayAsCheckbox property

TwwInspectorItem.PickList
, 76

Displayed values
TwwDBComboBox, 88

DisplayFormat property
TwwDBDateTimePicker,

95
DisplayText property

TwwInspectorItem, 75
DisplayValueChecked property

TwwCheckBox, 45
DisplayValueUnchecked

property
TwwCheckBox, 45

distribution requirements, 12
Ditto Capability

TwwDBGrid, 103
DittoAttributes property

TwwDBGrid, 109
DittoDirection property

TwwDBGrid.DittoAttribute
s, 109

DittoField method
TwwDBGrid, 137

DlgHeight property
TwwMemoDialog, 244

DlgLeft property
TwwMemoDialog, 244

DlgTop property
TwwMemoDialog, 244

DlgWidth property
TwwMemoDialog, 244

DottedLineColor property
TwwDataInspector, 56

Dragging a column in a grid,
130

DragVertOffset property
TwwDBGrid, 110

DrawCellInfo
TwwDBGrid, 125

DropDown method
TwwDBLookupCombo,

159
Drop-down panels

TwwDBGrid, 102
DropDownAlignment property

TwwDBLookupCombo,
153

DropDownCount property
TwwDBComboBox, 82

DropDownWidth property
TwwDBComboBox, 82

DroppedDown method
TwwDBComboBox, 86

DroppedDown property
TwwDBComboBox, 82

dynamic captions
TwwCheckBox, 47

E

ecoCheckboxSingleClick,
TwwDBGrid, 110

ecoDisableCustomControls,
TwwDBGrid, 110

ecoDisableEditorIfReadOnly,
TwwDBGrid, 111

ecoSearchOwnerForm,
TwwDBGrid, 110

ecoUseDateTimePicker,
TwwDBGrid, 111

Edit Combo List Dlg Box
using, 87

Edit Control
Select Fields dialog box, 30

Edit Control in grid
Checkbox, 30
CustomEdit, 30
ImageIndex, 30, 31

RichEdit, 30, 31
edit controls

custom framing, 21
picture masks, 32
transparency effects, 21

EditCalculated property
TwwDBGrid, 110, 145

EditControlOptions property
TwwDBGrid, 110

EditFrame properties, 22
EditFrame property

TwwRecordViewDialog,
263

TwwRecordViewPanel, 276
editing lookupfields in the grid,

145
editing memos in the grid, 149
EditorCaption property

TwwDBRichEdit, 182
EditorEnabled property

TwwDBSpinEdit, 197
EditorOptions property

TwwDBRichEdit, 182
EditorPosition property

TwwDBRichEdit, 183
EditText property

TwwInspectorItem, 75
EditWidth property

TwwDBRichEdit, 184
Enabled

TwwHistoryList, 82
Enabled property

EditFrame, 22
Frame, 22
TwwDBGrid IniAttributes,

116
TwwInspectorItem, 75

EndDate property
TwwDBMonthCalendar,

169
EndUpdate method

TwwDataInspector, 67
enter to tab, 147
Enter to tab property

TwwRecordViewDialog,
266

Epoch property(Year 2000)
TwwDBDateTimePicker,

95
Epsilon property,

TwwFilterDialog, 213
esoAddControls

TwwDBGrid
ExportOptions, 112

esoBestColFit
TwwDBGrid

ExportOptions, 112
esoClipboard

320 Index

TwwDBGrid
ExportOptions, 113

esoDblQuoteFields
TwwDBGrid

ExportOptions, 112
esoDynamicColors

TwwDBGrid
ExportOptions, 112

esoEmbedURL
TwwDBGrid

ExportOptions, 113
esoSaveSelectedOnly

TwwDBGrid
ExportOptions, 112

esoShowAlternating
TwwDBGrid

ExportOptions, 113
esoShowFooter

TwwDBGrid
ExportOptions, 112

esoShowHeader
TwwDBGrid

ExportOptions, 112
esoShowRecordNo

TwwDBGrid
ExportOptions, 112

esoShowTitle
TwwDBGrid

ExportOptions, 112
esoTransparentGrid

TwwDBGrid
ExportOptions, 113

Execute method
TwwDBRichEdit, 192
TwwFilterDialog, 219
TwwLocateDialog, 234
TwwLookupDialog, 240
TwwMemoDialog, 246
TwwRecordViewDialog,

271
TwwSearchDialog, 288

ExecuteDialog method
TwwFilterDialog, 220

ExecuteFindDialog method
TwwDBRichEdit, 192

ExecuteFontDialog method
TwwDBRichEdit, 192

ExecuteParagraphDialog
method
TwwDBRichEdit, 192

ExecuteQuery,
TwwFilterDialog, 220

ExecuteReplaceDialog method
TwwDBRichEdit, 192

ExecuteTabDialog method
TwwDBRichEdit, 192

Expanded property
TwwExpandButton, 202
TwwInspectorItem, 75

ExpandedOnly parameter
TwwInspectorItem, 77

ExpandGlyph,
TwwDataInspector, 54

Export method
TwwDBRichEdit, 193

Export To Clipboard, 113
Exporting to Excel (SLK), 113
Exporting to HTML File, 113
ExportOptions property

TwwDBGrid, 111
ExportType property

TwwDBGrid
ExportOptions, 111

F

FastRecordScrolling property
TwwDataInspector, 60

fctBitmap parameter,
TwwDBGrid, 140

fctCheckbox parameter,
TwwDBGrid, 140

fctCustom parameter,
TwwDBGrid, 140

fctField parameter,
TwwDBGrid, 140

fctImageIndex parameter,
TwwDBGrid, 140

fctRichEdit parameter,
TwwDBGrid, 141

fdByFilter, TwwFilterDialog,
210

fdByQueryModify,
TwwFilterDialog, 210

fdCaseSensitive,
TwwFilterDialog, 212

fdClearWhenCloseDataSet,
TwwFilterDialog, 212

fdClearWhenNoCriteria,
TwwFilterDialog, 212

fdDisableDateTimePicker,
TwwFilterDialog, 213

fdFilterByRange,
TwwFilterDialog, 208

fdFilterByValue,
TwwFilterDialog, 208

fdHidePartialAnywhere,
TwwFilterDialog, 213

fdNone, TwwFilterDialog, 210
fdShowCaseSensitive,

TwwFilterDialog, 212
fdShowFieldOrder,

TwwFilterDialog, 212
fdShowNonMatching,

TwwFilterDialog, 213
fdShowOKCancel,

TwwFilterDialog, 212

fdShowValueRangeTab,
TwwFilterDialog, 213

fdShowViewSummary,
TwwFilterDialog, 212

fdSizeable, TwwFilterDialog,
213

fdSmartFilter,
TwwFilterDialog, 209

fdUseActiveIndex,
TwwFilterDialog, 211

fdUseAllIndexes,
TwwFilterDialog, 210

Field Order,TwwFilterDialog,
206

Field property
TwwInspectorItem, 75

FieldName method
TwwDBGrid, 137

FieldOperators property
TwwFilterDialog, 209

fields
Display Attributes, 28
InfoPower Edit Control, 30

Fields
TwwFilterDialog, 206

FieldSelection property
TwwLocateDialog, 232

FieldsFetchMethod property
TwwFilterDialog, 209

FieldValue property
TwwLocateDialog, 232

FileName
TwwHistoryList, 83

FileName property
TwwDBGrid

ExportOptions, 112
TwwDBGrid IniAttributes,

116
FilterActivate method

TwwTable, 295
FilterCount property

TwwTable, 291
FilterDialog. See

TwwFilterDialog
FilterDialog property

TwwIntl, 226
FilterMemoSize property

TwwIntl, 226
FilterMethod property

TwwFilterDialog, 210
FilterOptimization property

TwwFilterDialog, 210
FilterPropertyOptions

TwwFilterDialog, 211
FilterPropertyOptions property

ADO suggested settings,
212

Interbase suggested settings,
212

Troubleshooting 321

Filters
TwwTable, 296

Filters with wildcards
TwwTable, 296

FindFirst method
TwwLocateDialog, 235

FindNext method
TwwLocateDialog, 235

FindNextMatch method
TwwDBRichEdit, 192

FindReplace method
TwwDBRichEdit, 193

FindReplaceText method
TwwDBRichEdit, 193

FindValue method
TwwIncrementalSearch,

224
FirstDayOfWeek property

TwwDBDateTimePicker
CalendarAttributes, 94

TwwDBMonthCalendar,
170

fixed columns
TwwDBGrid, 147

FixedColor property
TwwDBGrid, 125

FixedCols property
TwwDBGrid, 114

Flat property, 25
TwwDBNavigator, 175
TwwNavButton, 174

FlushChanges method
TwwDBGrid, 137

fmUseSQL, TwwFilterDialog,
210

fmUseTFields,
TwwFilterDialog, 210

fmUseTTable,
TwwFilterDialog, 210

FocusBorders property
EditFrame, 23
Frame, 23

FocusStyle property
EditFrame, 23
Frame, 23

Font property
TwwDBDateTimePicker

CalendarAttributes, 94
TwwMemoDialog, 244
TwwRecordViewDialog,

263
TwwRecordViewPanel, 277

Font style in dialogs, 226
FooterCellColor property

TwwDBGrid, 114
FooterColor property

TwwDBGrid, 114
FooterHeight property

TwwDBGrid, 114

footers
within a grid, 120, 136, 141

FormPosition property
TwwRecordViewDialog,

264
frame controller, 50
frame effects

key properties and events,
22

recordviewdialog, 24
recordviewpanel, 24
supporting components, 22

Frame properties, 22, 153
Frame property

TwwCheckBox, 45
TwwController, 50
TwwDBComboBox, 82
TwwDBComboDlg, 91
TwwDBDateTimePicker,

96
TwwDBEdit, 99
TwwDBLookupCombo,

153
TwwDBLookupComboDlg,

162
TwwRadioButton, 255
TwwRadioGroup, 258

G

GetActiveField method
TwwDBGrid, 137

GetComboDisplay method
TwwDBComboBox, 86

GetComboValue method
TwwDBComboBox, 86

GetFirstChild method
TwwDataInspector, 68
TwwInspectorItem, 77

GetItemByCaption method
TwwDataInspector, 68

GetItemByFieldName method
TwwDataInspector, 68

GetItemByRow method
TwwDataInspector, 68

GetItemByTagString method
TwwDataInspector, 68

GetLastChild method
TwwInspectorItem, 78

GetNext method
TwwInspectorItem, 78

GetNextRecordText method
TwwDBGrid, 138

GetNextSibling method
TwwInspectorItem, 78

GetPrior method
TwwInspectorItem, 78

GetPriorRecordText method
TwwDBGrid, 137

GetPriorSibling method
TwwInspectorItem, 78

GetRowByItem method
TwwDataInspector, 68

GetRTFText method
TwwDBRichEdit, 193

GlyphImages property
TwwRadioGroup, 258

GPFs, 299
graphics in grids, 148
grid column headings. See

TitleAlignment and
TitleColor properties

Grid property
TwwDBLookupCombo,

153
TwwExpandButton, 202

Grid, See TwwDBGrid, 101
GridColor property

TwwDBLookupComboDlg,
162

TwwLookupDialog, 236
TwwSearchDialog, 283

GridIndents property
TwwExpandButton, 202

GridOptions property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 237
TwwSearchDialog, 284

GridTitleAlignment property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 237
TwwSearchDialog, 284

GroupFieldName property
TwwDBGrid, 114

Grouping
TwwDBGrid, 101

GutterWidth property
TwwDBRichEdit, 184

H

HaveVisibleItem method
TwwDataInspector, 68

Height property
EditorPosition in

TwwDBRichEdit, 183
TwwRecordViewDialog,

264
Help, 20

How-To & Tips Sections,
20

Implementation & Coding
Examples, 20

On-line help, 20
Troubleshooting Section, 20

HideAllLines property

322 Index

TwwDBGrid, 114
HighlightColor property

TwwDBRichEdit, 184
HistoryList property

TwwDBComboBox, 82
HorizontalView property

TwwRecordViewDialog,
263

TwwRecordViewPanel, 276
hot-tracking

TwwDBComboBox, 47
HTMLBorderWidth property

TwwDBGrid
ExportOptions, 112

I

iioAutoDateTimePicker,
TwwInspectorItem, 75

iioAutoLookupCombo,
TwwInspectorItem, 75

ImageIndex property
TwwNavButton, 174

ImageList property
TwwDBGrid, 115
TwwDBLookupCombo,

153
TwwDBNavigator, 175

Images in a grid, 128
images in grids, 148
Images property

TwwCheckBox, 45
TwwExpandButton, 202
TwwRadioButton, 255
TwwRadioGroup, 258

Import method
TwwDBRichEdit, 193

Increment property
TwwDBSpinEdit, 197

incremental search. See
TwwIncrementalSearch

Indents property
TwwCheckBox, 46
TwwExpandButton, 202
TwwRadioButton, 255
TwwRadioGroup, 258

Index property
TwwNavButton, 174

IndicatorButton property
TwwDBGrid, 115

IndicatorColor property
TwwDBGrid, 115

IndicatorIconColor property
TwwDBGrid, 115

IndicatorRow property
TwwDataInspector, 56

InfoPower
building packages in Delphi

5, 14

component hierarchy, 15
component overview, 15
components. See

components
custom framing, 21
database architecture, 21
demonstration/sample

project, 15
description, 5
distribution requirements,

12
installing, 7
on-line help. See on-line

help
picture masks. See picture

masks
Picture Masks, 32
programming, 19
reference description, 43
source code, 20
transparency, 21
uninstalling, 12
whats new, 21

InfoPower 4000
compatibility with

InfoPower 2000, 12
introduction, 3
license agreement, 2
technical support, 3

IniAttributes property
TwwDBGrid, 115

IniFileName property
TwwIntl, 226

InitCombo method
TwwKeyCombo, 230

InitialDelay property
RepeatInterval of

TwwDBNavigator, 176
InplaceEditor property

TwwDataInspector, 56
TwwDBGrid, 117

Insert method
TwwInspectorCollection,

72
Insert Object Dialog

for a TwwDBRichEdit, 187
TwwDBRichEdit, 183

installation, 7
requirements, 7
step-by-step, 8

Installation
On-line Help

Delphi, 10
Tip, 10

international language support.
See TwwIntl

Internet addresses in a rich edit,
181, 191

Interval property
Interval of

TwwDBNavigator, 176
Intl. See TwwIntl
InvalidateCurrentRow method

TwwDBGrid, 138
InvalidateRow method

TwwDataInspector, 68
IsSelected method

TwwDBGrid, 138
IsVisible method

TwwNavButton, 177
ItemHeight property

TwwDBComboBox, 83
ItemIndex property

TwwRadioGroup, 258
Items property

TwwDataInspector, 56
TwwDBComboBox, 83, 88
TwwInspectorItem, 75
TwwInspectorItem.PickList

, 76
TwwNavButtons, 174
TwwRadioGroup, 259

K

KeyOptions property
TwwDBGrid, 118

L

LabelFont property
TwwRecordViewDialog,

264
TwwRecordViewPanel, 277

LabelIndent property
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276

Layout property
TwwDBNavigator, 175

ldoCaseSensitiveBelow,
TwwLocateDialog, 233

ldoCloseOnMatch,
TwwLocateDialog, 233

Left margin
TwwDBRichEdit, 188

Left property
EditorPosition in

TwwDBRichEdit, 183
TwwRecordViewDialog,

264
LeftOffset property

TwwRecordViewDialog,
264

TwwRecordViewPanel, 277
Level property

TwwInspectorItem, 75

Troubleshooting 323

License Agreement, 2
LikeSupportsUpperKeyword

property, TwwFilterDialog,
211

LikeWildcardChar property,
TwwFilterDialog, 211

LimitEditRect property
TwwDBComboBox, 84
TwwDBComboDlg, 91

LineBreak property
TwwNavButton, 174

LineColors property
TwwDBGrid, 118

Lines property
TwwDBRichEdit, 184
TwwMemoDialog, 244

LinesPerMemoControl
property
TwwRecordViewDialog,

264
TwwRecordViewPanel, 277

LineStyle property
TwwDBGrid, 118

LineStyleCaption property
TwwDataInspector, 57

LineStyleData property
TwwDataInspector, 57

LoadAllRTF property
TwwDBGrid, 118

LoadFromFile method
TwwInspectorCollection,

71
LoadFromIniFile method

TwwDBGrid, 138
LoadFromStream method

TwwInspectorCollection,
71

LocateDialog property
TwwIntl, 226

lookup combo
within a grid, 145

lookup table
TwwDBLookupComboDlg,

161
TwwLookupDialog, 236

LookupCombos in a grid, 300
LookupDisplay property

TwwDBLookupCombo,
156

lookupfield
within a grid, 145

LookupField property
TwwDBLookupCombo,

153
TwwDBLookupComboDlg,

163
LookupFields property

TwwQBE, 249, 250
TwwStoredProc, 289

LookupLinks property
TwwStoredProc, 289

LookupSource property, 156
LookupTable property

TwwDBLookupCombo,
154

TwwDBLookupComboDlg,
163

TwwLookupDialog, 237
LookupValue property

TwwDBLookupCombo,
154

TwwDBLookupComboDlg,
163

M

MapList property
TwwDBComboBox, 84
TwwInspectorItem.PickList

, 76
Mapped values

TwwDBComboBox, 88
Mapping a combo-box list

TwwDBComboBox, 84
Margin property

TwwNavButton, 174
TwwRecordViewDialog,

264
TwwRecordViewPanel, 277

masks. See picture masks
master/detail grids, 143, 200
MatchType property

TwwLocateDialog, 233
MaxDate property

TwwDBDateTimePicker,
96

TwwDBMonthCalendar,
170

MaxHeight property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 237
TwwSearchDialog, 284

MaxSelectCount property
TwwDBMonthCalendar,

170
MaxSize

TwwHistoryList, 83
MaxValue property

TwwDBSpinEdit, 198
MaxWidth property

TwwDBLookupComboDlg,
163

TwwLookupDialog, 237
TwwSearchDialog, 284

mDisableDialog property
TwwDBGrid, 119
TwwMemoDialog, 245

mdoDayState property
TwwDBMonthCalendar,

170
mdoMultiSelect property

TwwDBMonthCalendar,
170

mdoNoToday property
TwwDBMonthCalendar,

170
mdoNoTodayCircle property

TwwDBMonthCalendar,
170

mdoWeekNumbers property
TwwDBMonthCalendar,

170
MeasurementUnits property

TwwDBRichEdit, 184
memo dialog, 243
memo fields

TwwDBGrid, 118, 147
view/edit in

TwwMemoDialog, 243
view/edit options, 245

MemoAttributes property
TwwDBGrid, 118
TwwMemoDialog, 245

Menu property
TwwRecordViewDialog,

265
mGridShow property

TwwDBGrid, 118
TwwMemoDialog, 245

MinDate property
TwwDBDateTimePicker,

96
TwwDBMonthCalendar,

170
MinValue property

TwwDBSpinEdit, 198
modify labels and hints, 228
MouseCoord method

TwwDBGrid, 138
MouseEnterSameAsFocus

property
Frame, 23

MouseToCell method
TwwDataInspector, 68

MouseToItem method
TwwDataInspector, 69

MoveBy property
TwwDBNavigator, 175

Moving to a new cell in a grid,
129

MRUEnabled
TwwHistoryList, 83

MRUMaxSize
TwwHistoryList, 83

mSizable property
TwwDBGrid, 118

324 Index

TwwMemoDialog, 245
msoAutoUnselect,

TwwDBGrid, 119
msoShiftSelect, TwwDBGrid,

119
MSWordSpellChecker method

TwwDBRichEdit, 194
multiple row record display,

144
multiselect

with a
TwwDBLookupdialog,
241

Multi-Select
TwwDBMonthCalendar

TwwDBMonthCalendar,
170

Multi-selection in a grid
enabling, 146
iterating through the

selected records, 146
MultiSelectOptions property

TwwDBGrid, 119
mViewOnly property

TwwDBGrid, 119
TwwMemoDialog, 245

mWordWrap property
TwwDBGrid, 118
TwwMemoDialog, 245

N

NarrowSearch property
TwwTable, 292

NarrowSearchUpperChar
property
TwwTable, 292

NavButtons property
TwwNavButton, 175

Navigator property
TwwDBLookupCombo,

154
TwwIntl, 226
TwwNavButton, 175
TwwNavButtons, 173
TwwRecordViewDialog,

265
Navigator, database, 173
NavigatorButtons property

TwwRecordViewDialog,
265

NavigatorFlat property
TwwRecordViewDialog,

265
New Search Button,

TwwFilterDialog, 206
noConfirmDelete property

TwwDBNavigator, 175
NonFocusBorders property

EditFrame, 23
Frame, 23

NonFocusColor property
EditFrame, 23
Frame, 23

NonFocusFontColor property
EditFrame, 23
Frame, 23

NonFocusStyle property
EditFrame, 23
Frame, 23

NonFocusTextOffsetX
property
EditFrame, 23
Frame, 23

NonFocusTextOffsetY
property
EditFrame, 23
Frame, 23

NonFocusTransparentFontCol
or property
EditFrame, 23
Frame, 23

noUseInternationalText
property
TwwDBNavigator, 175

NullAndBlankState property
TwwCheckBox, 46

NullChar property
TwwFilterDialog, 209

NumberColumns property
PopupYearOptions,

TwwDBMonthCalendar,
171

NumGlyphs property
TwwNavButton, 174

O

ofoCancelOnEscape property
TwwTable, 292

ofoEnabled property
TwwTable, 292

ofoShowHourGlass property
TwwTable, 292

OK buttons
Setting the caption, 225

OKCancelBitmapped property
TwwIntl, 227

OKCancelOptions property
TwwRecordViewDialog,

265
OLE

TwwDBRichEdit, 183, 184
OLE Dialog

TwwDBRichEdit, 187
OnAcceptFilterRecord event

TwwFilterDialog, 216
OnAddHistoryItem event

TwwDBComboBox, 85
OnAfterCollapse event

TwwExpandButton, 203
OnAfterCreateControl event

TwwRecordViewDialog,
269

TwwRecordViewPanel, 279
OnAfterCreateDialog event

TwwNavButton, 176
OnAfterDrawCell event

TwwDBGrid, 125
OnAfterExpand event

TwwExpandButton, 203
OnAfterSearch event

TwwIncrementalSearch,
224

OnAfterSelectCell event
TwwDataInspector, 61

OnBeforeCollapse event
TwwExpandButton, 203

OnBeforeCreateControl event
TwwRecordViewDialog,

269
TwwRecordViewPanel, 280

OnBeforeDrawCell event
TwwDBGrid, 125

OnBeforeExpand event
TwwExpandButton, 203

OnBeforePaint event
background image, 61
Example, 61
grid background image, 126
Grid Example, 126
TwwDataInspector, 61
TwwDBGrid, 126

OnBeforeSelectCell event
TwwDataInspector, 62

OnCalcBoldDay event
TwwDBDateTimePicker,

97
TwwDBMonthCalendar,

171
OnCalcCellColors event

TwwDBGrid, 127
OnCalcDataPaintText event

Example, 62
summary text of child items,

62
TwwDataInspector, 62

OnCalcTitleAttributes event
TwwDBGrid, 127

OnCalcTitleImage event
TwwDBGrid, 128

OnCancelWarning event
TwwRecordViewDialog,

270
OnCanCollapse event

TwwDataInspector, 62
OnCanExpand event

Troubleshooting 325

TwwDataInspector, 63
OnCellChanged event

TwwDBGrid, 129
OnCheckValue event, 36

TwwDBEdit, 100
TwwDBGrid, 129

OnCloseDialog
TwwDBLookupComboDlg,

165
TwwMemoDialog, 246

OnCloseDialog event
TwwDBRichEdit, 189
TwwLookupDialog, 240
TwwRecordViewDialog,

270
TwwSearchDialog, 287

OnCloseUp event
TwwDBComboBox, 85
TwwDBLookupCombo,

157
OnCollapsed event

TwwDataInspector, 63
OnColumnMoved event

TwwDBGrid, 130
OnColWidthChanged event

TwwDBGrid, 130
OnCreateDateTimePicker

event
TwwDataInspector, 63
TwwDBGrid, 130

OnCreateDefaultCombo event
TwwDataInspector, 63

OnCreateDialog event
TwwDBRichEdit, 189

OnCreateHintWindow event
TwwDataInspector, 64
TwwDBGrid, 130

OnCreateRadioButton event
TwwRadioGroup, 260

OnCustomDlg event
TwwDBComboDlg, 92

OnDialogSummary event
TwwFilterDialog, 216

OnDitto event
TwwDBGrid, 131

OnDrawCaptionCell event
Example, 65
TwwDataInspector, 64

OnDrawDataCell event
Example, 65, 66
TwwDataInspector, 65, 69
TwwDBGrid, 131

OnDrawFooterCell event
TwwDBGrid, 132

OnDrawGroupHeaderCell
event
TwwDBGrid, 132

OnDrawIndicatorCell event
Example, 66

TwwDataInspector, 66
OnDrawItem event

TwwDBComboBox, 85
OnDrawTitleCell event

TwwDBGrid, 132
OnDropDown event

TwwDBComboBox, 85
TwwDBLookupCombo,

157
OnEditButtonClick event

TwwInspectorItem, 77
OnEncodeDateTime event

TwwFilterDialog, 217
OnEncodeValue event

TwwFilterDialog, 217
OnExecuteSQL event

TwwFilterDialog, 217
OnExpanded event

TwwDataInspector, 66
OnExportField event

TwwDBGrid, 133
OnFieldChanged event

TwwDBGrid, 133
OnFilter event

TwwQBE, 250
TwwQuery, 254
TwwStoredProc, 290
TwwTable, 294

OnFilter events
TwwClientDataset, 49

OnFilterEscape event
TwwQBE, 251
TwwQuery, 254
TwwStoredProc, 290
TwwTable, 295

OnFilterOptions event
TwwQBE, 250

OnFilterOptions property
TwwQuery, 253
TwwStoredProc, 289
TwwTable, 292

OnFilterPropertyOptions
property
TwwFilterDialog, 212

OnInitDialog event
TwwDBLookupComboDlg,

165
TwwDBRichEdit, 189
TwwFilterDialog, 217
TwwLocateDialog, 234
TwwLookupDialog, 239
TwwMemoDialog, 246
TwwRecordViewDialog,

270
TwwSearchDialog, 286

OnInitTempDataSet event
TwwFilterDialog, 217

OnInvalidValue event, 37
TwwClientDataSet, 49

TwwQBE, 251
TwwQuery, 254
TwwStoredProc, 290
TwwTable, 295

OnItemChanged event
TwwDataInspector, 66
TwwInspectorItem, 77

OnLeftColChanged event
TwwDBGrid, 133

On-line help, 20
OnMemoClose event

TwwDBGrid, 133
OnMemoOpen event

TwwDBGrid, 133
OnMenuLoadClick event

TwwDBRichEdit, 189
OnMenuPrintClick event

TwwDBRichEdit, 190
OnMenuSaveAndExitClick

event
TwwDBRichEdit, 190

OnMenuSaveAsClick event
TwwDBRichEdit, 190

OnMouseDown event
TwwDBGrid, 134
TwwDBMonthCalendar,

172
OnMouseEnter event

TwwCheckBox, 47
TwwDBEdit, 100

OnMouseLeave event
TwwCheckBox, 47
TwwDBEdit, 100

OnMouseMove event
TwwDBGrid, 135
TwwDBMonthCalendar,

172
OnMouseUp event

TwwDBGrid, 135
TwwDBMonthCalendar,

172
OnMultiSelectRecord event

TwwDBGrid, 135
OnNotInList event

TwwDBLookupCombo,
157

OnPerformCustomSearch
event
TwwDBLookupCombo,

158
TwwDBLookupComboDlg,

165
TwwIncrementalSearch,

227
TwwLookupDialog, 240
TwwSearchDialog, 287

, 190

OnPrintHeader event

326 Index

TwwDBRichEdit, 190
OnResize Event

TwwDBNavigator, 176
OnResizeDialog event

TwwRecordViewDialog,
270

OnRowChanged event
TwwDBGrid, 135
TwwNavButton, 176

OnSelectField event
TwwFilterDialog, 218

OnSetControlEffects event, 24
TwwRecordViewDialog,

271
TwwRecordViewPanel, 280

OnSortChange event
TwwLookupDialog, 240
TwwSearchDialog, 287

OnSyncDataSets event
TwwSearchDialog, 287

OnTitleButtonClick event
TwwDBGrid, 135

OnTopLeftChanged event
TwwDataInspector, 67

OnTopRowChanged event
TwwDBGrid, 135

OnUpdateFooter event
TwwDBGrid, 136

OnUpdateState event
TwwNavButton, 176

OnURLOpen event
TwwDBGrid, 136
TwwDBRichEdit, 181

OnURLOpen,
TwwDBRichEdit, 191

OnUserButton1Click
TwwDBLookupComboDlg,

166
TwwLookupDialog, 240
TwwMemoDialog, 246
TwwSearchDialog, 287

OnUserButton2Click
TwwDBLookupComboDlg,

166
TwwLookupDialog, 240
TwwMemoDialog, 246
TwwSearchDialog, 288

OnValidationErrorUsingMask
event
custom validation error

message, 67
Example, 67
TwwDataInspector, 67
TwwIntl, 227

opFixFirstColumn property
TwwDBLookupComboDlg,

164
TwwLookupDialog, 238
TwwSearchDialog, 238

opGroupControls property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 238
TwwSearchDialog, 238

opShowOKCancel property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 237
TwwSearchDialog, 237

opShowSearchBy property
TwwDBLookupComboDlg,

163
TwwLookupDialog, 237
TwwSearchDialog, 237

opShowStatusBar property
TwwDBLookupComboDlg,

164
TwwLookupDialog, 238
TwwSearchDialog, 238

Optimization in
TwwFilterDialog, 210

Options property
TwwDataInspector, 57
TwwDBDateTimePicker

CalendarAttributes, 94
TwwDBGrid, 119
TwwDBGrid

ExportOptions, 112
TwwDBGrid.DittoAttribute

s, 110
TwwDBLookupComboDlg,

163
TwwDBMonthCalendar,

170
TwwDBNavigator, 175
TwwFilterDialog, 212, 213
TwwInspectorItem, 75
TwwLocateDialog, 233
TwwLookupDialog, 237
TwwRecordViewDialog,

266
TwwRecordViewPanel, 277
TwwSearchDialog, 237,

284
OrChar property

TwwFilterDialog, 209
Order of fields

in a grid or record-view, 28
OrderByDisplay property

TwwDBLookupCombo,
154

TwwDBLookupComboDlg,
164

OutputWidthInTwips
TwwDBGrid

ExportOptions, 113
ovActiveRecord3DLines,

TwwDataInspector, 58

ovAllowInsert,
TwwDataInspector, 58

ovColumnResize,
TwwDataInspector, 57

ovEnterToTab,
TwwDataInspector, 57

ovFillNonCellArea,
TwwDataInspector, 58

ovHideCaptionColumn,
TwwDataInspector, 58

ovHideVertDataLines,
TwwDataInspector, 57

ovHideVertFixedLines,
TwwDataInspector, 58

ovHighlightActiveRow,
TwwDataInspector, 57

ovRowResize,
TwwDataInspector, 57

ovShowCaptionHints,
TwwDataInspector, 58

ovShowCellHints,
TwwDataInspector, 58

ovShowTreeLines,
TwwDataInspector, 58

ovTabExits,
TwwDataInspector, 57

ovTabToVisibleOnly,
TwwDataInspector, 58

P

Pack method
TwwTable, 295

PadColumnStyle property
TwwDBGrid, 121

PaintOptions property
TwwDataInspector, 58
TwwDBGrid, 121

paperless forms, 21
ParentItem property

TwwInspectorItem, 75
PerformSearch method

TwwDBLookupCombo,
159

PickList property
TwwInspectorItem, 76

picture masks, 32
creating picture masks, 33
defining a property string,

33
dialogs

Design Picture Mask
dialog, 39

Select Picture Mask
dialog, 38

editing, 35
events, 35
examples, 34
properties, 35

Troubleshooting 327

removing, 40
special characters, 33
supporting components, 22,

32
usage, 32

Picture property
AllowInvalidExit, 35
AutoFill, 35
PictureMask, 35
TwwDBEdit, 99
TwwDBLookupCombo,

154
TwwInspectorItem, 76

PictureMask property
TwwIncrementalSearch,

223
PictureMaskAutoFill property

TwwIncrementalSearch,
223

PictureMaskFromDataset
property
TwwLookupDialog, 238

PictureMaskFromDataSet
property
TwwDataInspector, 60
TwwDBGrid, 122
TwwRecordViewDialog,

267
TwwRecordViewPanel, 278
TwwSearchDialog, 284

PictureMaskFromField
property
TwwIncrementalSearch,

223
TwwLookupDialog, 238
TwwSearchDialog, 284

PictureMasks property, 35
TwwClientDataSet, 48
TwwDBGrid, 122
TwwLookupDialog, 238
TwwQBE, 250
TwwQuery, 253
TwwRecordViewDialog,

267
TwwRecordViewPanel, 278
TwwSearchDialog, 285
TwwStoredProc, 289
TwwTable, 293

PopupMenu property
TwwDBRichEdit, 186

PopupOptions property
TwwDBRichEdit, 186

PopupYearOptions property
TwwDBDateTimePicker

CalendarAttributes, 94
TwwDBMonthCalendar,

171
PrimaryKeyName property

TwwKeyCombo, 230

Print method
TwwDBRichEdit, 194

PrintFooter property
TwwDBRichEdit, 185

PrintHeader property
TwwDBRichEdit, 185

PrintJobName,
TwwDBRichEdit, 188

PrintMargins property
TwwDBRichEdit, 188

PrintPageSize property
TwwDBRichEdit, 185

programming InfoPower, 19

Q

QBE. See TwwQBE
QBE property

TwwQBE, 250
queries

QBE, 248
SQL, 253

Query By Example (QBE). See
TwwQBE

Query property
TwwTable, 293

Quicken style search
TwwDBLookupCombo,

156

R

ReadOnly property
TwwCheckBox, 46
TwwInspectorItem, 76

ReadOnlyColor property
TwwRecordViewDialog,

267
TwwRecordViewPanel, 278

Record view dialog, 261
Record view panel, 275
RefreshLinks method

TwwTable, 295
RegistrationNo property

TwwIntl, 227
removing picture masks, 40
reoAdjustPopupMenu property

TwwDBRichEdit, 184
reoCloseOnEscape property

TwwDBRichEdit, 183
reoDisableOLE property

TwwDBRichEdit, 185
reoFlatButtons property

TwwDBRichEdit, 183
reoNoConfirmation property

TwwDBRichEdit, 183
reoShowFormatBar property

TwwDBRichEdit, 182
reoShowHints property

TwwDBRichEdit, 183
reoShowInsertObject property

TwwDBRichEdit, 183
reoShowJustifyButton property

TwwDBRichEdit, 183
reoShowLoad property

TwwDBRichEdit, 182
reoShowMainMenuIcons

property
TwwDBRichEdit, 183

reoShowPageSetup property
TwwDBRichEdit, 182

reoShowPrint property
TwwDBRichEdit, 182

reoShowRuler property
TwwDBRichEdit, 183

reoShowSaveAs property
TwwDBRichEdit, 182

reoShowSaveExit property
TwwDBRichEdit, 182

reoShowSpellCheck property
TwwDBRichEdit, 183

reoShowStatusBar property
TwwDBRichEdit, 183

reoShowToolBar property
TwwDBRichEdit, 182

reoUseBackColor property
TwwDBRichEdit, 183

RepeatInterval property
TwwDBNavigator, 176

requirements, 7
Resizable property

TwwInspectorItem, 76
ReturnWhereClause,

TwwFilterDialog, 220
Rich Edit Control, 179
RichEdit property

TwwIntl, 227
Right margin

TwwDBRichEdit, 188
RightOffset property

TwwRecordViewDialog,
264

TwwRecordViewPanel, 277
Rounding property

TwwFilterDialog, 213
RoundingMethod property,

TwwFilterDialog, 213
RowHeightPercent property

TwwDBGrid, 122
rpoPopopUnderline property

TwwDBRichEdit, 187
rpoPopupBold property

TwwDBRichEdit, 187
rpoPopupBullet property

TwwDBRichEdit, 187
rpoPopupCopy property

TwwDBRichEdit, 187
rpoPopupCut property

328 Index

TwwDBRichEdit, 187
rpoPopupEdit property

TwwDBRichEdit, 187
rpoPopupFind property

TwwDBRichEdit, 187
rpoPopupFont property

TwwDBRichEdit, 187
rpoPopupInsertObject property

TwwDBRichEdit, 187
rpoPopupItalic property

TwwDBRichEdit, 187
rpoPopupMSWordSpellCheck

property
TwwDBRichEdit, 187

rpoPopupParagraph property
TwwDBRichEdit, 187

rpoPopupPaste property
TwwDBRichEdit, 187

rpoPopupReplace property
TwwDBRichEdit, 187

rpoPopupTabs property
TwwDBRichEdit, 187

rvcTransparentButtons
property
TwwRecordViewDialog,

262
TwwRecordViewPanel, 276

rvcTransparentLabels property
TwwRecordViewDialog,

262
TwwRecordViewPanel, 276

rvoCloseIsCancel property
TwwRecordViewDialog,

266
rvoConfirmCancel property

TwwRecordViewDialog,
266

rvoConsistentEditWidth
property
TwwRecordViewDialog,

266
TwwRecordViewPanel, 278

rvoEnterToTab property
TwwRecordViewDialog,

266
rvoHideCalculated property

TwwRecordViewDialog,
266

TwwRecordViewPanel, 278
rvoHideNavigator property

TwwRecordViewDialog,
266

rvoHideReadOnly property
TwwRecordViewDialog,

266
TwwRecordViewPanel, 277

rvokAutoCancelRec property
TwwRecordViewDialog,

265

rvokAutoPostRect property
TwwRecordViewDialog,

265
rvokShowOKCancel property

TwwRecordViewDialog,
265

rvoLabelsBeneathControl
TwwRecordViewDialog,

267
rvoLabelsBeneathControl

property
TwwRecordViewDialog,

278
rvoMaximizeMemoWidth

property
TwwRecordViewDialog,

267
TwwRecordViewPanel, 278

rvoModalForm property
TwwRecordViewDialog,

266
rvoShortenEditBox property

TwwRecordViewDialog,
266

TwwRecordViewPanel, 278
rvoStayOnTopForm property

TwwRecordViewDialog,
266

rvoUseCustomControls
property
TwwRecordViewDialog,

266
TwwRecordViewPanel, 278

rvoUseDateTimePicker
TwwRecordViewDialog,

267
rvoUseDateTimePicker

property
TwwRecordViewPanel, 278

S

SaveToFile method
TwwInspectorCollection,

72
SaveToIniFile method

TwwDBGrid, 139
SaveToRegistry property

TwwDBGrid IniAttributes,
116

SaveToStream method
TwwInspectorCollection,

72
Saving Grid info to ini file, 116
Saving Grid info to system

registry, 116
scroll back to prior records,

299
search

against field, 231
against index. See

TwwSearchDialog. See
TwwIncrementalSearch

SearchDelay property
TwwDBLookupCombo,

155
TwwIncrementalSearrch,

223
SearchDialog property

TwwIntl, 227
SearchField property

TwwDBLookupCombo,
155

TwwIncrementalSearrch,
223

TwwLocateDialog, 233
SearchTable property

TwwSearchDialog, 285
Section

TwwHistoryList, 83
SectionName property

TwwDBGrid IniAttributes,
116

Select Fields dialog box, 25
Adding Fields, 26
Display Attributes, 28
Edit Control, 30

Select Fields Dialog Box
Removing Fields, 28

Select Picture Mask dialog, 38
SelectAll method

TwwDBGrid, 139
Selected property

TwwDBGrid, 122
TwwDBLookupCombo,

155
TwwLookupDialog, 238
TwwRecordViewDialog,

267
TwwRecordViewPanel, 279
TwwSearchDialog, 285

SelectedFields property
TwwFilterDialog, 214

SelectedList property
TwwDBGrid, 123

selecting table index. See
TwwKeyCombo

SelectRecord method
TwwDBGrid, 139

SeqSearchOption property
TwwDBLookupComboDlg,

164
SeqSearchOptions property

TwwDBLookupCombo,
155

Set # fixed columns, 147
SetActiveField method

TwwDBGrid, 139

Troubleshooting 329

SetActiveRow method
TwwDBGrid, 139

SetBold method
TwwDBRichEdit, 194

SetBullet method
TwwDBRichEdit, 194

SetControlType
fctBitmap, 140
fctCheckbox, 140
fctCustom, 140
fctField, 140
fctImageIndex, 140
fctRichEdit, 141

SetControlType method
TwwDBGrid, 139

SetDataSourceFromComponen
t method
TwwDBNavigator, 177

SetFocusTabStyle property
TwwDataInspector, 60

SetItalic method
TwwDBRichEdit, 194

SetLookupField method
TwwQuery, 254
TwwTable, 296

SetParam method
TwwQBE, 251

SetPictureAutoFill method
TwwDBGrid, 141

SetPictureMask method
TwwDBGrid, 141

setting line colors
TwwDBGrid, 118

SetUnderline method
TwwDBRichEdit, 194

ShadowSearchTable property
TwwSearchDialog, 285

ShortCutDittoField property
TwwDBGrid.DittoAttribute

s, 109
ShortCutDittoRecord property

TwwDBGrid.DittoAttribute
s, 110

ShowAllIndexes property
TwwKeyCombo, 230

ShowAsButton property
TwwExpandButton, 203

ShowBorder property
TwwRadioGroup, 259

ShowButton property
TwwDBComboBox, 84
TwwDBComboDlg, 91
TwwDBDateTimePicker,

96
TwwDBLookupCombo,

156
TwwDBLookupComboDlg,

164
ShowEditYear property

PopupYearOptions,
TwwDBMonthCalendar,
171

ShowFocusRect property
TwwCheckBox, 46
TwwExpandButton, 203
TwwRadioButton, 256
TwwRadioGroup, 259

ShowGroupCaption property
TwwRadioGroup, 259

ShowHorzScrollBar property
TwwDBGrid, 123

ShowMatchText property, 156
TwwDBComboBox, 84
TwwDBLookupComboDlg,

164
TwwIncrementalSearch,

223
TwwInspectorItem.PickList

, 76
ShowMessages property

TwwLocateDialog, 233
ShowText property

TwwCheckBox, 46
TwwExpandButton, 203
TwwNavButton, 174
TwwRadioGroup, 259

ShowVertScrollBar property
TwwDBEdit, 99
TwwDBGrid, 123

SizeLastColumn method
TwwDBGrid, 141

SortBy property
TwwFilterDialog, 214

Sorted property
TwwDBComboBox, 84

SortFields property
TwwLocateDialog, 233

SortSelectedList method
TwwDBGrid, 141

source code. See InfoPower
source code

Spacing property
TwwNavButton, 174

SQL Tables, 299
Backward scrolling, 299
Navigating, 299
Performance, 299
TwwDBGrid, 300

SQLPropertyName property
TwwFilterDialog, 215

SQLTables property
TwwFilterDialog, 215

SQLUpperString property
TwwFilterDialog, 215

ssoCaseSensitive property,
TwwDBLookupCombo,
156

ssoEnabled property,
TwwDBLookupCombo,
155

StartDate property
TwwDBMonthCalendar,

171
StartYear property

PopupYearOptions,
TwwDBMonthCalendar,
171

State property
TwwCheckBox, 46

StorageType
TwwHistoryList, 83

stored procedures, 289
Stored values

TwwDBComboBox, 88
Style

TwwDBComboBox, 89
Style property

TwwDBComboBox, 84
TwwDBComboDlg, 91
TwwInspectorItem.PickList

, 76
TwwNavButton, 174
TwwRecordViewDialog,

268
TwwRecordViewPanel, 279

SyncSQLByRange property
TwwTable, 293

T

table lookups
TwwDBLookupCombo,

151
TwwDBLookupComboDlg,

161
TwwLookupDialog, 236

TabStop property
TwwInspectorItem, 76

Tag property
TwwInspectorItem, 76
TwwLocateDialog, 233
TwwLookupDialog, 238
TwwMemoDialog, 245
TwwSearchDialog, 285

TagString property
TwwInspectorItem, 76

Technical Support, 3
Text property

TwwDBLookupCombo,
156

TwwIncrementalSearch,
224

Themes, 41
Time property

330 Index

TwwDBDateTimePicker,
96

TwwDBMonthCalendar,
171

TitleAlignment property
TwwDBGrid, 124

TitleButtons property
TwwDBGrid, 124

TitleColor property
TwwDBGrid, 124

TitleImageList property
TwwDBGrid, 124

TitleLines property
TwwDBGrid, 124

TitleName
TwwDBGrid

ExportOptions, 113
Top margin

TwwDBRichEdit, 188
Top property

EditorPosition in
TwwDBRichEdit, 184

TwwRecordViewDialog,
264

TopOffset property
TwwRecordViewDialog,

264
TwwRecordViewPanel, 277

transparency
supporting components, 22

Transparent property, 25
EditFrame, 24
Frame, 24
TwwDBNavigator, 176
TwwRadioGroup, 259

TransparentActiveItem
property
TwwRadioGroup, 259

TreeLineColor property
TwwDataInspector, 61

TwoColumnDisplay property
TwwDBComboBox, 85, 88

TwwCheckBox, 5, 44
added events, 47
added properties, 44
description, 44
how to, 47
screenshot, 44

TwwClientDataset, 48
added events, 49
added methods, 49
added properties, 48

TwwClientDataSet, 5
TwwController, 22, 50

added methods, 50
added properties, 50

TwwCustomDrawGridCellInfo
TwwDBGrid, 125

TwwDataInspector, 5, 51

add a background, 69
added events, 61
added methods, 67
added properties, 54
adding dropdown items, 69
adding rows at runtime, 71
alternate row painting

sections, 59
architecture, 52
background image, 61
changing expand/collapse

glyphs, 69
custom drawing in caption

cell, 65
custom drawing in data cell,

65, 69
custom drawing in indicator

cells, 66
Customizing backgrounds

and colors, 58
customizing rows, 53
customizing validation error

message, 67
design-time

adding a new item, 53
adding a new sub-item,

53
adding fields, 54
deleting an item, 53
moving an item down,

54
moving an item up, 54

design-time aid, 53
displaying a checkbox, 70,

76
embedding 3rd Party

controls, 69
hide caption column, 69
highlighting data cell

example, 65
highlighting data font

example, 66
how to, 69
items, 53
iterating through items, 69,

78
manipulating items at

runtime, 71
performance issues, 60
row properties and methods,

73
screenshot, 52
selecting embedded

controls, 53, 74
setting active row, 69
summarizing text of child

items, 62
, 51

TwwDataSource, 5, 79

TwwDBComboBox, 5, 80
added events, 85
added methods, 86
added properties, 81
history lists, 82
how to, 87
persistent items, 82
two column display, 88

TwwDBComboDlg, 5, 90
added events, 92
added properties, 90

TwwDBDateTimePicker, 5, 93
added events, 97
added properties, 94

TwwDBEdit, 5, 98
added events, 100
added methods, 100
added properties, 99

TwwDBGrid, 5, 101
added events, 125
added methods, 136
added properties, 108
assigning to a new dataset,

300
Auto-resizing of column,

149
changing title attributes,

127
coloring alternating rows,

147
coloring an entire row, 127
Coloring the data cells, 127
column order, 28
deciding which fields to

export, 133
deleting multiple selected

records, 123
detect moving to different

record, 135
detecting a column drag,

130
detecting a column resize,

130
detecting a modified field,

133
detecting cell movement,

129
detecting horizontal

scrolling, 133
Detecting row change, 149
detecting user multi-select,

135
detecting vertical scrolling,

135
Displaying images in grids,

148
displaying images in the

title, 128

Troubleshooting 331

displaying TGraphic fields,
148

edit lookupfields in the grid,
145

editing memos, 149
Enter to Tab, 147
expandable composite

fields, 143
How To, 141
indicatorbutton, 145
integrating the record-view,

146
keyboard shortcuts

disabling, 147
master/detail grids, 143
multiple grids on one

dataset, 149
multirow record display,

144
painting a data cell, 131
painting a footer cell, 132
Saving to ini file, 116
Saving to system registry,

116
setting options at runtime,

121
Tips, 149

TwwDBLookupCombo, 5, 151
added events, 157
added methods, 159
added properties, 152
default LookupTable index

overriding, 160
defining attributes, 160
drop-down list

keyboard shortcut, 160
fill drop-down list from

QBE, 160
Query, 160

how to, 159
multiple

TwwDBLookupCombos
, 160

no data in drop-down lists,
300

selecting fields, 160
unable to scroll backwards,

300
update other fields, 159

TwwDBLookupComboDlg, 5,
161
added events, 165
added properties, 162
wwidlg, 165

TwwDBMonthCalendar, 5,
168
added properties, 169
displaying more than one

month, 172

events, 171
how to, 172
selecting a range of dates,

172
TwwDBNavigator, 5, 173

added events, 176
added methods, 177
added properties, 173
how to, 177

TwwDBRichEdit, 5, 179
added events, 189
added methods, 191
added properties, 181
adding own code to main

menu, 195
appending text in popup

editor, 196
binding to a database field,

195
displaying pop-up editor

with button, 195
embedding richedit text in

grid, 196
forcing wordwrap to adjust

to printer, 196
how to, 195
storing RichText at design

time, 195
TwwDBSpinEdit, 5, 197

added properties, 197
TwwExpandButton, 6, 200

added events, 203
added properties, 201

TwwFilterDialog, 6, 205
added events, 216, 219
added properties, 208
end-user resizing, 221
how to, 204, 220
loading and saving filters,

221
unique display labels, 221
Using wwSearchDialog

with wwFilterDialog,
220

TwwIncrementalSearch, 6, 222
added events, 224
added methods, 224
added properties, 222
can't find value, 301
case-insensitive, 224

TwwInspectorCollection, 71
added methods, 71
added properties, 71
adding rows at runtime, 71

TwwInspectorItem, 73
added events, 77
added methods, 77
added properties, 73

TwwIntl, 6, 225

added events, 227
added properties, 225
how to, 228
modify labels and hints, 228

TwwKeyCombo, 6, 229
added methods, 230
added properties, 229
case insensitive, 230
display indexes, 301
drop-down list

keyboard shortcut, 230
properties

PrimaryKeyName, 230
TwwLocateDialog, 6, 231

added events, 234
added methods, 234
added properties, 232
how to, 235
search field, 235

TwwLookupDialog, 6, 236
access lookup tables, 242
added events, 239
added methods, 240
added properties, 236
how to, 240
lookup and fill, 240
multiselect use, 241
OK or Cancel, 302

TwwMemoDialog, 6, 243
added events, 246
added methods, 246
added properties, 243
adding buttons, 247
adding timestamps to

memos, 247
background color, 247
buttons, 247
how to, 247
OnInitDialog event, 247
position, 247
size, 247
using buttons, 247

TwwNavButtons,
TwwDBNavigator, 173

TwwQBE, 6, 248
added events, 250
added methods, 251
added properties, 248
heterogeneous QBEs, 252
how to, 251
multiple alias QBEs, 252
parameters, 252

TwwQuery, 6, 253
added events, 254
added methods, 254
added properties, 253
how to, 254

TwwRadioButton, 255
added properties, 255

332 Index

TwwRadioGroup, 6, 257
added events, 260
added properties, 258
description, 257
how to, 260
make radio group

transparent, 260
screenshot, 257
setting items at runtime,

260
special features, 257

TwwRecordViewDialog, 6,
261
added events, 269
added methods, 271
added properties, 262
Attaching your own custom

menu, 273
Controlling onClose

behavior, 273
Creating accelerators for the

controls, 272
Customize spacing between

controls, 273
Customizing selection and

order of fields, 271
Defining picture masks for

fields, 274
Embedding custom controls,

272
how to, 271
Integrating with the grid,

272
Testing layout at design

time, 272
TwwRecordViewPanel, 275

added events, 279
added properties, 275
Creating accelerators for the

controls, 280
Customize spacing between

controls, 281
Customizing selection and

order of fields, 280
Embedding custom controls,

280
field order, 28
how to, 280

TwwRTFHeaderFooter
TwwDBRichEdit, 185

TwwSearchDialog, 6, 282
added events, 286
added methods, 288
added properties, 283
Adding functionality, 288
case-insensitive, 288
how to, 288
OK or Cancel, 302
require datasource, 301

search text, 302
SQL tables, 288
SQLSyncByRange

property, 288
Using ADOTables, 288
Using with non-TTable,

287, 288
TwwStoredProc, 6, 289

added events, 290
added methods, 290
added properties, 289
how to, 290

TwwTable, 6, 291
added events, 294
added methods, 295
added properties, 291
field properties, 297
GotoCurrent, 303
how to, 296
pack, 303
record display order, 297
selecting fields, 297
user selection of table index.

See TwwKeyCombo

U

UnboundDataType property
TwwDBComboBox, 99
TwwDBDateTimePicker,

96
TwwDBEdit, 99
TwwDBSpinEdit, 99, 198

underline controls, 21
uninstalling InfoPower, 12
UnselectAll method

TwwDBGrid, 141
Unselecting all records in a

grid, 146
UnselectRecord method

TwwDBGrid, 141
UpdateRecord method

TwwDBEdit, 100
Updating other fields

TwwDBLookupCombo,
147

UpperRangePadChar property
TwwFilterDialog, 215

URL Detection in rich edit,
181, 191

UseBracketsAroundFields
property, TwwFilterDialog,
211

UseLikeOperator property,
TwwFilterDialog, 211

UseLocateMethod property
TwwLocateDialog, 234

UseLocateMethodForSearch
property

TwwIntl, 227
UseLocateWhenFindingValue

property
TwwIntl, 225

UsePictureMask property, 36
TwwDBEdit, 99

User button in dialog
closing the dialog, 302

UserButton1Caption property
TwwDBLookupComboDlg,

164
TwwLookupDialog, 239
TwwMemoDialog, 245
TwwSearchDialog, 286

UserButton2Caption property
TwwDBLookupComboDlg,

164
TwwLookupDialog, 239
TwwMemoDialog, 245
TwwSearchDialog, 286

UserMessages property
TwwIntl, 227

UserSpeedButton1,
TwwDBRichEdit, 188

UserSpeedButton2,
TwwDBRichEdit, 189

UseTFields property
TwwDBGrid, 123, 125, 149
TwwDBLookupCombo,

156
TwwDBLookupComboDlg,

164
TwwLookupDialog, 239
TwwSearchDialog, 286

using InfoPower picture masks,
32

using multiple grids on one
dataset, 149

using the Design Picture Mask
dialog, 39

using the Select Picture Mask
dialog, 38

V

ValidateWithMask event
TwwStoredProc, 290

ValidateWithMask property
TwwClientDataSet, 48
TwwQuery, 254
TwwTable, 293

Value property
TwwDBComboBox, 85
TwwDBSpinEdit, 198
TwwRadioGroup, 259

ValueChecked property
TwwCheckBox, 46
TwwRadioButton, 256

Values property

Troubleshooting 333

TwwRadioGroup, 259
ValueUnchecked property

TwwCheckBox, 47
TwwRadioButton, 256

VersionInfoPower property
TwwIntl, 227

VerticalView property
TwwRecordViewDialog,

263
TwwRecordViewPanel, 276

view order. See
TwwKeyCombo

View Summary Button
TwwFilterDialog, 206

Visible property
TwwInspectorItem, 77

VisibleItemsOnly parameter
TwwInspectorItem, 77

W

WantReturns property

TwwDBEdit, 100
Whats new in InfoPower, 21
Width property

EditorPosition in
TwwDBRichEdit, 184

TwwRecordViewDialog,
264

Word-wrap
TwwDBGrid, 147

WordWrap property
TwwDBEdit, 100
TwwInspectorItem, 77

word-wrapping in grids, 147
wwDittoNext

TwwDBGrid.DittoAttribute
s, 109

wwDittoPrior
TwwDBGrid.DittoAttribute

s, 109
wwDittoPriorOrNext

TwwDBGrid.DittoAttribute
s, 109

wwFilter property
TwwTable, 293

wwFilterField
TwwClientDataset, 49

wwFilterField method
TwwQBE, 251
TwwQuery, 254
TwwStoredProc, 290
TwwTable, 296

wwFindKey method
TwwTable, 296

wwidlg, 165

Y

Year 2000 compliance
TwwDBDateTimePicker,

93, 95
YearsPerColumn property

PopupYearOptions,
TwwDBMonthCalendar,
171

