
1stClass StudioTM
Developer’s Guide

Copyright ©2017 Woll2Woll Software, all rights reserved.
No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from Woll2Woll Software.

1stClass is a trademark of Woll2Woll Software. Delphi is a trademark of Embarcadero
Corporation. Other brand and product names are trademarks or registered trademarks of
their respective holders.

Woll2Woll Software,Inc.
 3150 Reed Ave.

Livermore, CA 94550 U.S.A.
Voice: (925) 371-1663

http://www.woll2woll.com
sales@woll2woll.net

1stClass License Agreement

By using the software product (“1stClass”) contained in this package, you agree to the
terms and conditions of this license agreement.

Permission is given to the licensee (“you”) of this product to use the development version
of this software under Delphi or C++ Builder on one computer at a time, and to make one
backup copy. Similarly, if the 1stClass source code is purchased, permission is given to
the licensee to use the source code under Delphi or C++ Builder on one computer at a
time. You may utilize and/or modify this product for use in your compiled applications.
You may distribute and sell any product, which results from using this product in your
applications, except a product of similar nature. You may NOT redistribute any source
code that may be included with this product.

This product is sold “as is”, without warranty, implied or expressed. While every effort is
made to insure that this product and its documentation are free of defects, Woll2Woll
Software shall not be held responsible for any loss of profit or any other commercial
damage, including, but not limited to special, incidental, consequential or other damages
occasioned by the use of this product.

Additional Source Code Restrictions:

If you purchased the optional 1stClass source code...

You may use 1stClass components and the related source code to create new components
for use within your company or to create a Windows program (executable file created by
Delphi). The resulting .EXE file, and .bpl run-time packages may be distributed via
freeware, shareware or any commercial means of sale or distribution, but you must not
include any other 1stClass file with your distribution media.

You may not create new components for distribution outside of your company, via
freeware, shareware or any commercial product offering, based on any 1stClass
component.

Woll2Woll Software reserves the right to modify or remove any function, procedure or
property, that is not documented in this 1stClass Developer’s Guide, in future releases of
the 1stClass component library. This includes modifying the number and/or type of
parameters passed to un-documented functions or procedures.

Woll2Woll Software is not responsible for, nor can we provide technical support for, your
use of any un-documented 1stClass function, procedure or property. You assume full
responsibility for supporting your resulting code and component(s) as well as the results
of your using any undocumented function, procedure or property.

Technical Support Options:
Before contacting us for technical support, please take some time to carefully search the
manual and on-line help for the information, including the troubleshooting section. Make
sure that you are asking a specific question about 1stClass instead of a general Delphi
question. Also be sure to check the useful sites at http://www.tamaracka.com/search.htm
and http://www.mers.com/searchsite.html, as they contain a database of 1stClass
newsgroup threads as well as all other Delphi related newsgroups.
When you need to contact us, please post your questions into our newsgroup. Also review
the messages already asked on the forum to see if your question has been asked before.
On the Internet, you can find our newsgroup by clicking on the MessageBoard link
located at http://www.woll2woll.com.
In some cases it may be necessary to email us a simple project that shows us the problem
you are having. If you need to do this then please follow these recommendations:
1. Make your project as simple as possible so that we are not debugging your code but

instead are helping you with the proper way to use the components. In general try
to get your project down to one form, and remove all the extraneous objects and code.

2. When packaging your files for email delivery, use pkzip to compress your files into
one .ZIP file.

3. Email to support@woll2woll.com

Our newsgroups are the fastest way to obtain technical support as it allows us
to efficiently obtain all the necessary information to solve your problems.

Internet WWW Site: http://www.woll2woll.com
 Newsgroup: Click on link located at http://www.woll2woll.com
Internet Technical Support e-mail address: support@woll2woll.com

i

Contents
Introducing 1stClass ..1

Before You Begin...1
What’s Included in the Developer’s Guide? ..2
What is 1stClass? ...3
Benefits of Using 1stClass..4

Installing 1stClass ..7
1stClass Requirements ...7
Installation Steps ..8
Uninstalling 1stClass..13
Distributing applications which use the 1stClass components..13
Building packages that use the 1stClass components...13

1stClass Component Overview..14
1stClass Sample Projects ..14
Complete 1stClass Component Hierarchy ...14
Getting Help...17
Using the Optional 1stClass Source Code ...18

1stClass Component Reference...19
Description of Reference ..19
TfcBitmap (Class) ..20
TfcButtonEffects (Class) ..21
TfcButtonGroup ...22
TfcCalcEdit ..29
TfcColorCombo..36
TfcColorList ...44
TfcDBImager..54
TfcDBTreeNode (Class) ...57
TfcDBTreeView...61
TfcEditFrame (Class) ...79
TfcFontCombo ...82
TfcGroupBox ...88
TfcImageBtn...90
TfcImageForm..99

ii

TfcImager...104
TfcLabel...111
TfcOutlookBar ...114
TfcOutlookList (Class) ...119
TfcPanel...126
TfcProgressBar...127
TfcShapeBtn ..130
TfcShapeBtn ..130
TfcStatusBar ..135
TfcStatusPanel (Class) ...139
TfcText (Class) ..143
TfcTrackBar ...148
TfcTreeCombo ...155
TfcTreeNode (Class) ..164
TfcTreeNodes (Class)...176
TfcTreeHeader ...182
TfcTreeHeaderSection (Class) ..186
TfcTreeView..188

Index..212

Chapter 1, Introducing 1stClass 1

C h a p t e r

1
Introducing 1stClass

With the assistance of this 1stClass Developer’s Guide, you will learn what 1stClass is,
how to install the 1stClass components into your Delphi/C++ Builder development
environments, how to access 1stClass demonstration forms, what each of the 1stClass
components is and most importantly, how to use these powerful components in your
Windows applications.

Before You Begin
This guide was written with several assumptions in mind: First, that you understand how
to use the Microsoft Windows environment. For help with Windows, please refer to your
printed Windows documentation and on-line help files.

Second, that you have a basic understanding of Delphi or C++ Builder terminology and
the application development techniques covered in your Delphi / C++ Builder manuals.
The specific topics you should be familiar with include:

♦ Creating and managing projects.
♦ Creating new forms (data entry/edit windows) and managing units

(source code files).
♦ Working with data-aware components and their associated properties

and events.
♦ Writing simple Object Pascal or C++ source code .

2 Chapter 1, Introducing 1stClass

What’s Included in the Developer’s Guide?
The 1stClass Developer’s Guide is comprised of the following four main chapters:

1. Introduction Description of 1stClass, its requirements and how you and your
end-users benefit when 1stClass components are included in your
Delphi or C++ Builder based Windows applications.

2. Installation Complete installation instructions. Building and distributing
packages which use 1stClass.

3. Overview Text and graphic charts showing the architecture of all 1stClass
components. Reference to demonstration programs

4. Reference Implementation instructions for each 1stClass component, which
includes complete descriptions of new properties and events added
to each 1stClass component; how-to section; tips section; and Object
Pascal source code examples where necessary to help you
implement the 1stClass components in your applications.

Chapter 1, Introducing 1stClass 3

What is 1stClass?
1stClass brings a wealth of high-class components to make your applications stand out.
1stClass’s powerful and attractive component library installs automatically into the
component palette in its integrated development environment (IDE). The 1stClass
components include the following, listed alphabetically:

 TfcButtonGroup

 TfcCalcEdit

 TfcColorCombo

 TfcColorList

 TfcDBImager

 TfcDBTreeView

 TfcFontCombo

 TfcGroupBox

 TfcImageBtn

 TfcImageForm

 TfcImager

 TfcLabel

 TfcOutlookBar

 TfcPanel

 TfcProgressBar

4 Chapter 1, Introducing 1stClass

 TfcShapeBtn

 TfcStatusBar

 TfcTrackBar { XE “TfcTrackBar”}

 TfcTreeCombo

 TfcTreeHeader

 TfcTreeView

Benefits of Using 1stClass
1stClass was designed for, and with assistance from, professional and corporate Windows
application developers. Concerns within this group of developers include ease of
development and distribution of applications, responsiveness of the application to end-user
actions, and consistency across individual forms and entire applications.

Fast, Easy Application Development
Adding 1stClass components to your form is simple. Select the component from the
component palette, click the point on your form where you want the component placed,
enter values for properties that do not have a default value, modify other properties as
necessary, add optional Object Pascal code to any of the supplied events as required,
compile and run your application.

Professional, Consistent Design
Woll2Woll Software took great care in the graphic and operational design of the 1stClass
components. Your end-users won’t get confused or need to be retrained when you add
1stClass components to your application because they were designed to look and behave in
the same manner as Delphi’s built-in components.

For developers, Delphi-consistency means we’ve provided complete Windows on-line help
for every 1stClass component and you access on-line help for 1stClass in the same manner
you access Delphi on-line help—by pressing F1. For example, to view on-line help for the
Items property of 1stClass’s TfcTreeView component, select the component, select the
Items property and then press F1. It’s that simple.

Chapter 2, Installing 1stClass 5

 C h a p t e r

2

Installing 1stClass
We’ve automated the installation of 1stClass as much as possible, but a few manual steps
are still required to complete the process before you can access the 1stClass components
and sample applications provided with 1stClass. Complete instructions for both installing
and un-installing 1stClass are provided in this chapter.

1stClass Requirements
To install the 1stClass component library, your system should already contain a fully
functional version of the Delphi 5.0, Delphi 6.0, Delphi 7.0, or C++ Builder 5.0 or C++
Builder 6.0 development environment, contain about 8MB of free hard disk space.
1stClass does not have any CPU or memory requirements above or beyond those necessary
to run Delphi or C++ Builder. However, if you are creating a complex form that contains
many components, you may need to increase the stack size of your project. We deem the
16K (04000 Hex) default to be inadequate in most cases and strongly recommend that
you raise this value to 24K (6000 Hex), or up to whatever size is necessary to stop any
compiler or runtime errors you might be receiving.

Options | Project | Linker | Min Stack Size 0x00006000

6 Chapter 2, Installing 1stClass

Installation Steps

Installing is accomplished with the following steps:
1. Running the Setup.exe program for your version of Delphi or C++ Builder (C++

support in 1stClass Professional version only)

2. Installing the components or packages into the IDE environment

3. Installing the help files into the IDE environment

1 - Running the SETUP.EXE program for your version of Delphi or C++
Builder
1. Insert the 1stClass CD-ROM into your computer, and then using the Windows

Program Manager, or your favorite method of running a Windows program, run
the SETUP.EXE program located in the \Delphi7 directory (for Delphi 7),
\Delphi6 directory (for Delphi 6), the \Delphi5 directory (for Delphi 5), the
\Builder6 directory (for Builder 6), the \Builder5 directory (for Builder 5) of your
CD-ROM

2. Carefully read each screen, including the license agreement, and click Next to
proceed. When you encounter the Information dialog box that is shown in Figure
2.1, enter your name, organization, and registration number. Click the Next
button to proceed further.

Chapter 2, Installing 1stClass 7

Figure 2.1 - 1stClass’s Information dialog box.

3. Select a directory to place the 1stClass files. The default directory is
“C:\Program Files\Woll2Woll\1st4000vcl7” for Delphi 7,
“C:\Program Files\Woll2Woll\1st4000vcl6” for Delphi 6,
“C:\Program Files\Woll2Woll\1st4000vcl5” for Delphi 5,
“C:\Program Files\Woll2Woll\1st4000vcl6” for C++ Builder 6
 “C:\Program Files\Woll2Woll\1st4000vcl5” for C++ Builder 5
If you want to change the installation directory, then type a new name or click
the Browse button to select an existing folder.

Figure 2.2 - 1stClass main installation dialog box

When you are ready to continue, click on the Next button to start the installation
process, or click the Back button to return to the main installation dialog box. The
installation will automatically check for available space, and create all the necessary
directories and sub-directories, de-compress and copy all requested files from the
installation diskette to your hard drive, and then display some additional installation
instructions for your viewing.

2 - Installing the components or packages into the IDE environment
Packages are special dynamic-link libraries used by Delphi or C++ Builder
applications. They allow code sharing among applications, reducing executable size
and conserving system resources. 1stClass supports both design time and runtime

8 Chapter 2, Installing 1stClass

packaging options. The following are the steps to install these packages into Delphi
and/or C++ Builder.

1. If Delphi/C++ Builder is not currently running, start it now. If Delphi/C++
Builder is currently running, save and close your open project and all related files
before you proceed.

2. If using Delphi, update the Delphi search path to point to the 1stClass DCU files.
If using C++ Builder, skip this step.

A. Click on Tools | Environment Options | Library.

B. Edit the Directories | Library Path edit box and add the 1stClass DCU
library path. For instance if you installed to c:\1stClass, you would add
c:\1stClass to the Library path edit box. If you wish to debug into the
1stClass source code, then instead add the \1stClass\source directory path to
your Library Path.

3. Installing the design time package - The install program will automatically
install the fc4000dcl7.bpl (for Delphi 7), fc4000dcl6.bpl (for Delphi 6 and C++
Builder 6), fc4000dcl5.bpl (for Delphi 5 and C++ Builder 5) design time
packages for you. If for any reason you fail to see the 1stClass components
appear in your component palette, then perform the following steps:

A. Click on Project | Options | Packages

B. Click on the Design Packages | Add button to add fc4000dcl7.bpl (for
Delphi 7), fc4000dcl6.bpl (for Delphi 6 and C++ Builder 6), or
fc4000dcl5.bpl (for Delphi 5 and C++Builder 5) to your list of design time
packages for your project. This file can be found in your \1stClass\package
subdirectory.

4. Optional - installing the run time package into Delphi/C++ Builder. This step is
required if your applications are using the fc4000v7 (for Delphi 7), fc4000v6 (for
Delphi 6 and C++ Builder 6), or fc4000v5 (for Delphi 5 and C++ Builder 5) run-
time packages.

A. Click on (Project | Options | Packages).

B. Click on the (Runtime Packages | Add button) to add fc4000v7.dcp (for
Delphi 7), fc4000v6.dcp (for Delphi 6), fc4000v6.bpi (for C++ Builder 6)
fc4000v5.dcp (for Delphi 5), or fc4000v5.bpi (for C++ Builder 5) found in
your DELPHI or C++ Builder LIB directory, to your runtime time package
list for your project.

C. Click on the default button in order to make the 1stClass package available
to all your projects.

Chapter 2, Installing 1stClass 9

3 - Installing the 1stClass On-line Help Files
The Help files are automatically installed when running the SETUP program.

10 Chapter 2, Installing 1stClass

Installation Tip
If desired, you can move either the 1stClass component palette tabs to a different position
from their default installation location via Delphi’s Environment Options dialog box.

1. Open the Environment Options dialog box using the following:

 Tools | Environment Options

2. Click the Palette tab to display the Pages and Components lists as shown in Figure
2.3 below.

Figure 2.3 - The Delphi Environment Options dialog box with the Palette page
selected, which displays the available Pages and Components lists.

3. Click and drag the 1stClass entry displayed in the Pages list to the desired location
within the list.

4. Click the OK button to close the dialog box.

Chapter 2, Installing 1stClass 11

Uninstalling 1stClass
Uninstalling 1stClass from the Delphi/C++ Builder can be accomplished by the following:

A. Close Delphi/C++ Builder if either is open.

B. Start the Control Panel application from Windows.

C. Click on the icon labeled Add/Remove Programs

D. Select 1stClass and click on the add/remove button. Only the files that were
installed with the Setup program will be removed

Distributing applications which use the 1stClass
components.

If you use the 1stClass runtime package fc4000v7 for Delphi 7, fc4000v6 (for Delphi 6
and C++ Builder 6) or fc4000v5 (for Delphi 5 and C++ Builder 5) in your applications,
then you will also need to distribute this file to your customer’s computer. As explained
in the 1stClass license, you may not distribute any other 1stClass file except the 1stClass
runtime packages. We recommend you place this file in your customer’s \windows\system
directory.

If you are not using the 1stClass runtime packages when building your applications, but
instead only the fc4000dcl7, fc4000dcl6 or fc4000dcl5 design time packages, then you
will have no additional distribution requirements beyond what Delphi or C++ Builder
already require.

Building packages that use the 1stClass components.
If you wish to build your own custom packages which require the 1stClass component
library, then you will need to add the corresponding 1stClass runtime package to the
required section of your package fc4000v7 for Delphi 7, fc4000v6 (for Delphi 6 and C++
Builder 6) or fc4000v5 (for Delphi 5 or C++ Builder 5).

12 Chapter 3, 1stClass Component Overview, 1stClass Sample Projects - Installation Tip

 C h a p t e r

3
1stClass Component Overview

When possible, each 1stClass component was modeled after one of Delphi’s built-in
components by inheriting either the actual Delphi component itself or one of it’s
ancestors. This ensures that each 1stClass component contains as much of the basic
functionality provided by its Delphi ancestor as possible. This section describes the
following topics:

• 1stClass Sample Projects

• Complete 1stClass Component Hierarchy

• Getting Help

• Using the Optional 1stClass Source Code

1stClass Sample Projects
Included with 1stClass are several small Delphi sample units that demonstrate the features
and functionality of the 1stClass components. During installation, a subdirectory named
DEMOS was automatically created within the 1stClass directory. We recommend you
build and run the main demonstration program as it includes all of the 1stClass demos in
one project. The main demonstration program is located in your 1stClass sub-directory at:
..\1st3000vcl6\demos\Demo1stClass.dpr.

Complete 1stClass Component Hierarchy
The next page contains a text-based, graphical hierarchy of the complete 1stClass
component library with all Delphi ancestors being shown for each 1stClass component.
This hierarchy provides you with a clear guide to all ancestor components so you can
obtain information about inherited methods, properties and other component data and
behavior. This becomes very important, and a great time saver, if you decide to create
some of your own in-house components by inheriting a 1stClass component.

Chapter 3 - 1stClass Component Overview, Complete 1stClass Component Hierarchy - 13

14 Chapter 3, 1stClass Component Overview, Complete 1stClass Component Hierarchy -

Complete 1stClass Component Hierarchy
TObject
 └─TPersistent
 └─TComponent
 ├─TControl
 │ └─TGraphicControl
 │ ├─TfcCustomImage
 │ │ └─TfcCustomImageForm
 │ │ └─TfcImageForm
 │ ├─TfcCustomImager
 │ │ └─TfcImager
 │ └─TfcCustomLabel
 │ └─TfcLabel
 └─TWinControl
 ├─TCustomControl
 │ └─TCustomPanel
 │ ├─TfcCustomPanel
 │ │ ├─TfcPanel
 │ │ └─TfcTrackBar
 │ ├─TfcDBCustomImager
 │ │ └─TfcDBImager
 │ ├─TfcCustomPanel
 │ │ └─TfcCustomButtonGroup
 │ │ ├─TfcButtonGroup
 │ │ └─TfcCustomOutlookBar
 │ │ └─TfcOutlookBar
 │ └─TfcTreeHeader
 ├─TCustomEdit
 │ └─TfcCustomCombo
 │ ├─TfcCustomCalcEdit
 │ │ └─TfcCalcEdit
 │ ├─TfcCustomColorCombo
 │ │ └─TfcColorCombo
 │ └─TfcCustomTreeCombo
 │ ├─TfcTreeCombo
 │ └─TfcCustomFontCombo
 │ └─TfcFontCombo
 ├─TCustomGroupBox
 │ └─TfcCustomGroupBox
 │ └─TfcGroupBox
 ├─TCustomListBox
 │ └─TfcCustomColorList
 │ └─TfcColorList
 ├─TfcCustomBitBtn
 │ └─TfcCustomImageBtn
 │ ├─TfcCustomShapeBtn
 │ │ └─TfcShapeBtn
 │ └─TfcImageBtn
 ├─TfcCustomStatusBar
 │ └─TfcStatusBar
 ├─TfcCustomTreeView
 │ └─TfcTreeView
 ├─TfcProgresBar
 └─TfcDBCustomTreeView
 └─TfcDBTreeView

Chapter 3 - 1stClass Component Overview, Getting Help - 15

Getting Help

Windows On-line Help
Accessing on-line help for a 1stClass component or one of its properties is exactly the
same as within Delphi—select the component or property you want help with and
press F1.

How-To and Tips Sections
Most of the 1stClass component descriptions in this chapter also include How to and
Tips sections. These sections provide very valuable information that could save you
many hours of design, creation and debugging headaches, so take advantage of them
whenever you can.

Implementation and Coding Examples
When you want a source code example of how to implement one or more 1stClass
components, look in this guide’s Index under the name of the component you are
working with. Then turn to the page number given for the sample application entry.

Troubleshooting
When you run into problems implementing a 1stClass component, please browse our
newsgroups and FAQ located at http://www.woll2woll.com, before calling our
technical support department.

The information provided in our newsgroups and FAQ are there to save you time,
money and frustration. Please use it wisely.

Exhaustive Index
We put a lot of extra effort into creating the Index section at the back of this guide
and hope that most topics you might need to search for are listed there. Please take a
moment and browse through the Index to get an idea of how it’s laid out and how it
can help you, before you really need it.

16 Chapter 3, 1stClass Component Overview, Using the Optional 1stClass Source Code -

Using the Optional 1stClass Source Code
If you purchased the optional 1stClass component library source code, your use of this
code is limited by the terms and conditions specified in the 1stClass License Agreement
which is located at the beginning of this manual. As stated in this agreement, by using
this product, you automatically agree to the terms and conditions specified therein.

Your educational benefit of the source code depends upon your interest and knowledge of
the Delphi language. However the source code is invaluable if you run into a problem and
need to trace into the 1stClass source to determine the cause.

From time to time, you may be tempted to modify one of the existing 1stClass components
to meet some specific need you have. However, resist this temptation with all your might
because we cannot provide technical support to you if you have modified the 1stClass
component source code in any way. In addition, you would not be able to install any
1stClass maintenance or upgrade releases from us since your modified source code would
be overwritten with these new releases.

Rather, if you need to create a new component for use within your organization that is
based on one of the 1stClass components, we suggest that you do one of the following:

1. Inherit the 1stClass component in your program and modify it as necessary.

2. If substantial internal code changes are necessary, create your own new
component: Copy all of the necessary source code files to new file
names in a new directory, rename the component internally, rewrite
the registration section accordingly and then finally modify the
component code to meet your specific needs.

Chapter 4 - 1stClass Component Reference, Description of Reference - 17

C h a p t e r

4
1stClass Component Reference

Description of Reference
This chapter of the 1stClass Developer’s Guide discusses the details of each 1stClass
component or class, the properties, the methods, and events along with how-to and tips
sections for each component. If the component indicates ‘class’, then it is not a component
you can drop into your form, but instead is a supporting component for another class.

It does not discuss the properties or events that are available as part of the ancestor
Delphi/C++ components, unless changes were made to them. If you are not familiar with
Delphi’s built-in components, their properties or events, please read through the Delphi
User’s Guide before you begin working with the 1stClass component library.

18 Chapter 4, 1stClass Component Reference, TfcBitmap (Class) - Ancestor

TfcBitmap (Class)
TfcBitmap is a supporting class for many 1stClass components. These include the
TfcImageBtn’s Image and ImageDown properties, and the TfcImager’s WorkBitmap
runtime property. You may wish to access this class to retrieve or set the corresponding
1stClass property from a TBitmap. See also the Delphi TGraphic class for a list of its
available methods and properties.

Ancestor
TGraphic
 TfcBitmap

Added Methods

Clear
Clears the image
procedure Clear; virtual;

LoadFromBitmap
Loads the image from the TBitmap specified by Bitmap
procedure LoadFromBitmap(Bitmap: TBitmap); virtual;

SaveToBitmap
Saves the image to the TBitmap specified by Bitmap
procedure SaveToBitmap(Bitmap: TBitmap); virtual;

Chapter 4 - 1stClass Component Reference, TfcButtonEffects (Class) - Ancestor 19

TfcButtonEffects (Class)
TfcButtonEffects is a supporting class for many 1stClass combo controls. The following
properties are new in 1stClass 3000 to support the custom button effects in controls that
display a button next to the edit control. These include the following controls:
TfcCalcEdit, TfcColorCombo, TfcFontCombo, and the TfcTreeCombo.

Ancestor
TPersistent
 TfcButtonEffects

Properties

Transparent

Set to True to enable the button to be displayed transparently so that the control’s
background is used as the button’s background.

Flat
Set to True to enable the button to be normally painted without the borders. The
borders are painted when the mouse moves over the button.

20 Chapter 4, 1stClass Component Reference, TfcButtonGroup - Properties

TfcButtonGroup

 The 1stClass TfcButtonGroup control allows the creation of a collection of
custom-designed radio buttons or checkboxes from a single component. Use a
TfcButtonGroup to organize buttons into logical groups, easily create radio button groups,
checklist style groups, or a group of standard buttons. It has the ability to either contain a
collection of shape buttons (TfcShapeBtn) or image buttons (TfcImageBtn).

The TfcButtonGroup control

Use the ButtonClassName property to select whether you are using a collection of shape
buttons or image buttons. Note: If you change this property you will lose your previous
button definitions.

Use the Columns, ControlSpacing, Layout properties to define the way the buttons are
organized.

Use the ClickStyle property to define whether the buttons click as a radio-group (only 1
selected), as a checkbox (toggle button), or just as a regular button (click button)

1stClass provides the following design-time aids when configuring your shape button.

• If you right-click over a TfcShapeBtn or a TfcImageBtn within the
TfcButtonGroup, the popup menu for those controls will appear in addition
to the ones for the TfcButtonGroup.

• Double-clicking the control will bring up the standard collection editor. See
the Delphi / C++ Builder docs for information on this dialog.

• When you right-click the button group at design time, you can access the
following actions from the pop-up menu in addition to the menu selections
for the right-clicked button.

New Button
Selecting this item will cause a new button to be added to the button group.

Chapter 4 - 1stClass Component Reference, TfcButtonGroup - Ancestor 21

Ancestor
TCustomPanel
 TfcCustomTransparentPanel
 TfcCustomButtonGroup
 TfcButtonGroup

Added Properties

BevelInner, BevelOuter, BorderStyle, BorderWidth
These properties have the same meaning as the properties of the same name found in
TCustomPanel.

AutoBold
When this property is True, the captions of the buttons in the ButtonGroup will
become bold when they are depressed.

Data Type: boolean

Buttons
This property returns the TfcCustomBitBtn associated with the ButtonGroup item at
the specified Index. This property is a shortcut, where Buttons[i] is equivalent to
calling ButtonItems[i].Button. See the ButtonItems property for more information.

ButtonClassName
This property determines what type of buttons are used in the ButtonGroup. The
class must be derived from TfcCustomBitBtn, and the object inspector only allows the
values TfcShapeBtn and TfcImageBtn. Setting this property will clear the
ButtonGroup of its buttons. At design time, a warning will be displayed.

ButtonItems
This property returns the collection TfcButtonGroupItems (See below), which contain
the individual collection items of the ButtonGroup control. TfcButtonGroupItems has
a default array property, so each collection can be referenced directly through Items
using standard array notation. (i.e. ButtonGroup.ButtonItems[i].Button.Caption).
Clicking on this property from the object inspector brings up 1stClass’s collection
editor.

Data Type: TfcButtonGroupItems

TfcButtonGroupItems is a class indirectly derived from TCollection. In addition to
the properties defined for TCollection, TfcButtonGroupItems also has the following
properties you can access during program execution.

22 Chapter 4, 1stClass Component Reference, TfcButtonGroup - Added Properties

ButtonGroup Returns the corresponding TfcButtonGroup for the ButtonItems.

Items Items is an array containing TfcButtonGroupItem objects. The value
of the index parameter corresponds to the index property of the
TfcButtonGroupItem.
property Items[Index: Integer]: TfcButtonGroupItem

Each button in the ButtonGroup has its own TfcButtonGroupItem. This class is
indirectly derived from TCollectionItem. In addition to the properties found in that
class, the following are added.

Button Contains the reference to the TfcCustomBitBtn associated with this
item.

ButtonGroup Contains the reference to the TfcCustomButtonGroup associated
with this item.

ClickStyle
This property determines whether the ButtonGroup behaves like a radio group, or like
a checklist group.

Data Type: TfcButtonGroupClickStyle
Valid Values: bcsCheckList, bcsRadioGroup, bcsClick

bcsCheckList
This is the equivalent of a group of buttons each with their own GroupIndex
value. The behavior is that each button can be individually pressed and
unpressed.

bcsRadioGroup
This is the equivalent of a group of buttons each with same GroupIndex value.
The behavior is that only one button in the group can be pressed at any one time.

bcsClick
This is the equivalent of a group of buttons the GroupIndex set to 0 (the Default).
The behavior is the same as when buttons are just dropped onto the form without
any of their properties set.

ControlSpacing
The amount of space between each button in the ButtonGroup is controlled by this
property. Negative values will cause the buttons to overlap.

Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcButtonGroup - Added Properties 23

Columns
The meaning of this property is related to the value of the Layout property. When
Layout is loVertical, this property reflects how many columns are in the ButtonGroup.
When Layout is loHorizontal, this property reflects how many rows are in the
ButtonGroup.

Data Type: Integer

Layout
Determines the orientation of the buttons in the ButtonGroup. If Layout is set to
loVertical, then the buttons are ordered from the top-down, and new columns will
appear as a new column. If Layout is set to loHorizontal, then the buttons are ordered
from the left to right, and new "columns" will appear as a new row.

Data Type: TfcLayout
Valid Values: loVertical, loHorizontal

MaxControlSize
This property will constrain the size of the button so that it is never larger than the
specified value. This only affects the length of the side corresponding to the layout
property—If Layout is loVertical, then this affects the Height of the button, if it is
loHorizontal, then this affects the Width of the button. Use this property to achieve
effects similar to that of the Windows Task Bar.

Data Type: Integer

Selected
Controls which TfcButtonGroupItem in the button group is pressed. This property is
only valid if the ClickStyle property is set to bcsRadioGroup.

Data Type: TfcButtonGroupItem

ShowDownAsUp
This property is only valid if the ClickStyle property is set to bcsRadioGroup. When
this property is set to True, the selected button will display as down only while
clicking the button. When the button has become selected, then this button will be
displayed as an up state button even though the actual state of the button is down.
The Default is False.

Data Type: Boolean

Transparent
Controls whether or not the background of the button group will be transparent. The
background is defined as any portion of the button group not covered by a button.

Data Type: Boolean

24 Chapter 4, 1stClass Component Reference, TfcButtonGroup - Added Events

Added Events

OnChange
This event is fired immediately after the selected button changes. The parameters for
this event are as follows:

ButtonGroup ButtonGroup associated with event

OldSelected TfcButtonGroupItem referring to the previous selection. You
can refer to OldSelected.Button to gain access to the actual
button control.

Selected: TfcButtonGroupItem referring to the button that has just
become selected. You can refer to Selected.Button to gain
access to the actual button control.

OnChanging
This event is fired immediately before the selected button changes. The parameters
for this event are as follows:

ButtonGroup ButtonGroup associated with event

OldSelected TfcButtonGroupItem referring to the previous selection. You
can refer to OldSelected.Button to gain access to the actual
button control.

Selected: TfcButtonGroupItem referring to the button that is about to be
selected. You can refer to Selected.Button to gain access to the
actual button control.

Added Methods

TfcButtonGroupItems methods
The following methods are accessed through the ButtonItems property.

Add
Adds another button to the ButtonGroup. Returns the newly created
TfcButtonGroupItem.
function Add: TfcButtonGroupItem;

FindButton
Returns the TfcButtonGroupItem associated with the specified button.
function FindButton(AButton: TfcCustomBitBtn):
 TfcButtonGroupItem; virtual;

Chapter 4 - 1stClass Component Reference, TfcButtonGroup - How To 25

Clear
Clears out all the buttons in the ButtonGroup. All items are freed, as well as
their associated button.
procedure Clear; virtual;

Example: The following clears the buttons from the button group.
fcButtonGroup1.ButtonItems.Clear;

How To

Use the TfcImageBtn with the TfcButtonGroup
Set the ButtonClassName property to 'TfcImageBtn'. Be aware, however, that toggling
this property will clear your buttons array.

Constrain the width (or height) of the buttons
If the layout for the button group is loHorizontal, then use the MaxControlSize property to
prevent the buttons from taking up the entire client area of a button group. This is most
useful when the button group only contains a few buttons. If the layout is loVertical, then
MaxControlSize affects the buttons' heights.

Select a button in the TfcButtonGroup
There are a number of ways to select the individual buttons within the button group.
Double-clicking on the button group brings up the standard collection editor. When
selecting an item in this editor, the corresponding buttons get selected into the object
inspector. Also, holding down the Alt key while clicking over a button will select the
button into the object inspector.

Prevent selected buttons from appearing in bold
Turn off the AutoBold property.

Conserve System Resources
When using the TfcImageBtn with the button group, the same image is often used for
many different buttons. Therefore, when many of the buttons have the same image, set
the ExtImage (and) ExtImageDown properties to point to either a TfcImager or a
TfcImageBtn. In this way multiple bitmap handles are not created for each button in the
button group. For example, you can add the first button to the button group, set its Image,
and then all of the following buttons will take on the properties of the first button, while
doing so efficiently.

26 Chapter 4, 1stClass Component Reference, TfcButtonGroup - How To

Iterate through the items in a button group
To iterate through the items within the button group, simply reference the ButtonItems
property. For example, to have a message box pop-up for every item in the button group
that is selected, execute the following code:

with fcButtonGroup1, ButtonItems do
begin
 for i := 0 to Count – 1 do
 if ButtonItems[i].Selected then
 ShowMessage('Item ' + ButtonItems[i].Button.Caption +
 ' Selected');
end;

Make the button group behave like the windows task bar
There are a number of properties that should be manipulated to mimic the behavior of the
application task bar in Windows. Set the MaxControlSize to a value greater than zero that
corresponds to the maximum width of a button. Set Layout to loHorizontal.

Change the color of the selected button
To change the color of the selected button in a button group, just use the OnChange event.
For example:

procedure TForm1.fcOutlookBar1Change(
 ButtonGroup: TfcCustomButtonGroup;
 OldSelected, Selected: TfcButtonGroupItem);
begin
 if OldSelected <> nil then
 OldSelected.Button.Color := clBtnFace;
 Selected.Button.Color := clRed;
end;

Chapter 4 - 1stClass Component Reference, TfcCalcEdit - Ancestor 27

TfcCalcEdit

 Use the 1stClass TfcCalcEdit to provide the end-user with the ability to quickly
compute new numeric values for fields that require frequent computations.

Sample TfcCalcEdit Control

To configure the display properties of the drop-down calculator control use the
CalcOptions property. Using the CalcOptions property you can load a background,
choose it’s color, or change the button margin. You can also use the CalcOptions |
Options to further modify the appearance and behavior of the calculator control for a
nearly endless amount of variations.

If you wish to bind the control with a field in your database, then set the DataSource and
DataField properties. If the DataField is assigned, it must specify a numeric type field.
The displayformat property of the TField is respected when the control does not have the
focus.

InfoPower support: If you are also using Woll2Woll’s InfoPower product, you can embed
the TfcCalcEdit into InfoPower’s grid and record-view components. The steps on doing
this are the same as with any InfoPower control. See the InfoPower documentation for
more information on attaching a custom control to its grid or record-view.

Ancestor
TWinControl
 TCustomEdit
 TfcCustomCombo
 TfcCustomCalcEdit
 TfcCalcEdit

28 Chapter 4, 1stClass Component Reference, TfcCalcEdit - Added Properties

Added Properties

Anchors, AutoSelect, AutoSize, BorderStyle, and Constraints
These properties are equivalent to the properties of the same name found in TEdit.
See the Delphi / C++ Builder docs under TEdit for more information on these
properties.

Alignment
The Alignment of the text of the TfcCalcEdit control depends on this property when
the control is unbound (Datasource and DataField not set). Otherwise it uses the
TField’s Alignment.

Data Type: TAlignment

AllowNull
The AllowNull property when set to True, gives the user a convenient way to clear the
combos current selection simply by entering either the or <BACKSPACE>
character. The default value is False, which means the user is not permitted to clear
(set to Null) an existing entry.

ButtonEffects
See TfcButtonEffects for information on this property.

Data Type: TfcButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when
ButtonStyle is set to cbsCustom.

Data Type: TBitmap

ButtonStyle
Select the icon to use for this component.
Data Type: TfcComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

cbsDownArrow The bitmap is displayed

cbsEllipsis The bitmap is displayed
cbsCustom: The icon defined by the ButtonGlyph property.

ButtonWidth
Determines the width of the Button. Set to zero for the default button width.

Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcCalcEdit - Added Properties 29

CalcOptions
This property is a collection of exposed properties of the dropdown TfcCalculator
control making it easier to customize the dropdown calculator control at design time.

Data Type: TfcPopupCalcOptions

Background This property specifies the background of the calculator control.
Use this to load your own custom background tile or image.

Data Type: TBitmap

BackgroundStyle This property specifies how the background should be painted in
the calculator control. If it is a tile, then set this to cbdTile.

Data Type: TfcCalcBitmapDrawStyle
Valid Values: cbdStretch, cbdTile, cbdTopLeft, or cbdCenter

ButtonMargin Specifies the spacing between buttons in the calculator control.

Data Type: Integer

Options This set of options specifies the behavior and display effects of
the dropdown calculator control.

Data Type: Set of TfcCalcOption
Valid Values: cboHotTrackButtons, cboFlatButtons,
cboHideBorder, cboHideEditor, cboShowStatus, cboHideMemory,
cboSelectOnEquals, cboShowDecimal, cboSimpleCalc,
cboFlatDrawStyle, cboRoundedButtons, cboDigitGrouping,
cboCloseOnEquals

cboHotTrackButtons If True, then the buttons in the dropdown
calculator will track the mouse. This
property defaults to False.

cboFlatButtons If True, then the buttons in the dropdown
calculator will appear as flat with no
borders unless the button is pressed or
hot-tracked. This property defaults to
False.

cboHideBorder If True, then the 3D Border around the
drop-down calculator will not appear and
instead a simple flat style black line will
appear around the outer edge of the
calculator. This property defaults to
False.

30 Chapter 4, 1stClass Component Reference, TfcCalcEdit - Added Properties

cboHideEditor Determines visibility of the calculator
display. This property defaults to True.

cboShowStatus If True, then a status panel displaying the
current calculation will be shown at the
bottom of the calculator. This property
defaults to False.

cboHideMemory If True, then the dropdown calculator
will not display the memory status
window and the memory buttons. This
property defaults to False.

cboSelectOnEquals If True, then a when equals is entered the
text in the calculator edit portion will be
selected after the total is computed. This
property defaults to False.

cboShowDecimal If True, then a decimal point will always
be visible. This property defaults to
False.

cboSimpleCalc If True, then the dropdown calculator
will only show the basic calculator keys.
This property defaults to False.

cboFlatDrawStyle If True, then calculator buttons will be
displayed in a simple flat (Outline) style.
This property defaults to False.

cboRoundedButtons If True, then the calculator buttons will
be displayed as rounded buttons. This
property defaults to False.

cboDigitGrouping If True, then the thousands separator will
be displayed. Useful for currency data.
This property defaults to False.

cboCloseOnEquals If True, then the calculator will close
when the = button is pressed. This
property defaults to False.

PanelColor When no bitmap is being used, set PanelColor to the color you
wish the calculator to be displayed in. Default is clBtnFace.

DataField
Optional: This property contains the name of the field that you want to bind the
TfcCalculator to. You can bind it to any numeric type field. If you do not wish to

Chapter 4 - 1stClass Component Reference, TfcCalcEdit - Added Events 31

bind the TfcCalcEdit to a table field, then leave both the Datafield and Datasource
properties blank. The default value is blank (unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the TfcCalcEdit control with data. The default value is blank (unbound).

Data Type: TDataSource

DisplayFormat
Optional: This property describes the numeric display format for the control when it
does not have the focus. If this property is left blank the field’s displayformat will be
used next if the control is bound to a database field.

Data Type: String

Frame
See the topic “Key properties and events for custom framing” in chapter 4 for more
information on this property.

Data Type: TfcEditFrame

ShowButton
When this property is set to False, then the TfcCalcEdit’s bitmap button is not shown.
The default value is True.

Text
This property is only respected when the DataSource and DataField properties are
blank. When this property is set to True, then the text in the TfcCalcEdit will be
displayed.

Added Events

OnBeforeDropDown
 Use the OnBeforeDropDown event to decide whether or not you want the drop-down
calculator to appear. Call sysutils.abort if you wish to prevent the calendar from
appearing.

The parameters for this event are as follows:

Sender:TfcCalcEdit TfcCalcEdit control associated with this event.

32 Chapter 4, 1stClass Component Reference, TfcCalcEdit - Added Methods

OnSetCalcButtonAttributes
 Use the OnSetCalcButtonAttributes event to further refine the caption, color, or hint
for each calculator button in the drop-down calculator.

The parameters for this event are as follows:

Sender:TfcCalcEdit TfcCalcEdit control associated with this event.

Atype: TfcCalcButtonType Atype defines the type of buttons whose attributes can be
set. Possible values are:

 btNone,bt0, bt1, bt2, bt3, bt4, bt5, bt6, bt7, bt8, bt9,
btDecimal, btPlusMinus, btMultiply, btDivide, btAdd,
btSubtract, btEquals, btSqrt, btPercent, btInverse,
btBackspace, btClear, btClearAll, btMRecall, btMStore,
btMClear, btMAdd

ACaption: String Caption of the current button.

AFontColor: TColor Font Color of the Button.

AButtonColor: TColor Color of Button. This is ignored when using
cboFlatDrawStyle.

AHint: String Hint of Button

For an example using this event see the How To Topic on “Make calculator look like MS
Money Calculator Edit Control”.

Added Methods

CloseUp
Call this method if you wish to force the drop-down list to close. Set Accept to True
if you would like the control to accept the last selected entry.
procedure CloseUp(Accept: boolean); override;

DropDown
Call this method if you wish to force the combo to drop-down the color list selections
Procedure DropDown; override;

IsDroppedDown
Call this method when you want to determine if the dropdown control is visible.
Function IsDroppedDown:boolean; override;

ResetCalculator
Call this method when you wish to reset the calculator.

Chapter 4 - 1stClass Component Reference, TfcCalcEdit - How To 33

Procedure ResetCalculator; virtual ;

How To

Initialize an unbound CalcEdit control.
To initialize an unbound TfcCalcEdit control just set the Text property to the
corresponding numeric value.

Make calculator look like MS Money Calculator Edit Control
If you wish to make your dropdown calculator look similar to the MS Money Calculator,
then just do the following.

1) Set CalcOptions.PanelColor to clBlack and the CalcOptions.Margin = 7.

2) Set CalcOptions.Options to: [cboFlatButtons, cboHideBorder, cboHideEditor,
cboSimpleCalc].

3) Finally add the following code to your OnSetCalcButtonAttributes event to color the
buttons different colors.
procedure TForm1.fcCalcEdit1SetCalcButtonAttributes(Calc: TfcCalculator;
 var AType: TfcCalcButtonType; var ACaption: String;
 var AFontColor: TColor; var AButtonColor:TColor; var AHint: String);
begin
 case AType of
 bt0..bt9,btDecimal: AButtonColor := clWhite;
 btClear,btBackSpace,btClearAll: AButtonColor := clLime;
 btDivide,btMultiply,btAdd,btSubtract,btPlusMinus,btEquals:
 AButtonColor := clBtnFace;
 end;
 AFontColor := clBlack;
end;

34 Chapter 4, 1stClass Component Reference, TfcColorCombo - How To

TfcColorCombo

 Use the 1stClass TfcColorCombo to provide the end-user with the ability to select
a color value or a color string from a drop-down listbox.

TfcColorCombo Control with ShowMatchText

To configure the display properties of the drop-down list use the ColorListOptions
property. The color choices available in the drop-down list are defined by the
ColorListOptions | Options property. You can further customize the colors by adding your
own colors through the TfcColorCombo’s CustomColors property. Use the
ColorListOptions | SortBy property to control the order of the colors in the drop-down list.

If you wish to bind the control with a field in your database, then set the DataSource and
DataField properties. If the DataField is assigned, it must specify a string or integer field.
If you attach the control to a database integer field, then the drop-down list will display
the text names of the colors, but store the color as a number in the database.

InfoPower support: If you are also using Woll2Woll’s InfoPower product, you can embed
the TfcColorCombo into InfoPower’s grid and record-view components. The steps on
doing this are the same as with any InfoPower control. See the InfoPower documentation
for more information on attaching a custom control to its grid or record-view. See the
how-to topics at the end of this section for information on displaying the color boxes of a
TfcColorCombo for all rows in an InfoPower grid.

Use the ShowMatchText property to enable incremental searching as the user types. This
option also updates the control’s display so that the matching text is displayed in the
control.

Set the Style property to csDropDownList to force the entry to come from the list. If
AllowClearKey is False, then the user is not permitted to clear an existing entry.

Use the OnAddNewColor event to allow your end users to add new colors to the list, or use
the OnFilterColor event to filter out colors based on some criteria you define.

Chapter 4 - 1stClass Component Reference, TfcColorCombo - Ancestor 35

Ancestor
TWinControl
 TCustomEdit
 TfcCustomCombo
 TfcCustomColorCombo
 TfcColorCombo

Added Properties

AutoSize, BorderStyle, and CharCase
These properties are equivalent to the properties of the same name found in TEdit.
See the Delphi / C++ Builder docs under TEdit for more information on these
properties.

AlignmentVertical
The value of this property determines how the text in the fcColorCombo will be
vertically aligned. This property defaults to fcavTop.

Data Type: TfcAlignVertical

Valid Values: fcavTop, fcavCenter

AllowClearKey
When the style is set to csDropDownList, the user is not permitted to clear their
selection. The AllowClearKey property when set to True, gives the user a convenient
way to clear the combos current selection simply by entering either the or
<BACKSPACE> character. The default value is False, which means the user is not
permitted to clear an existing entry.

Data Type: boolean

AutoDropDown
When True, the color list drops down automatically when a keystroke is entered. The
default value is False.

Data Type: boolean

ButtonEffects
See TfcButtonEffects for information on this property.

Data Type: TfcButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when
ButtonStyle is set to cbsCustom.

36 Chapter 4, 1stClass Component Reference, TfcColorCombo - Added Properties

Data Type: TBitmap

ButtonStyle
Select the icon to use for this component. If the property is set to cbsEllipsis, then a
ColorDialog will pop-up. Otherwise, if the property is set to cbsDownArrow then the
color listbox will drop-down instead.

Data Type: TfcComboButtonStyle

Valid Values: cbsDownArrow, cbsEllipsis

ColorAlignment
Determines the alignment of the color relative to the text.

Data Type: TLeftRight
Valid Values: taLeftJustify, taRightJustify

ColorDialog
If you have a color dialog setup with its own custom colors and events, this property
allows you to override the color dialog that the TfcColorCombo uses.

Data Type: TColorDialog

ColorDialogOptions
This set of properties allows for the manipulation of the popup color dialog’s options.
Set cdoEnabled to True to pop-up a colordialog when double clicking on a
colorcombo. For more information on using these options see the Delphi / C++
Builder docs under the Options property of the TColorDialog.

Data Type: TfcColorDialogOptions

Valid Values: cdoEnabled, cdoPreventFullOpen, cdoFullOpen, cdoSolidColor,
cdoAnyColor

ColorListOptions
This property is a collection of exposed properties of the dropdown TfcColorList
control making it easier to customize the dropdown color listbox control. For more
information on these properties see TfcColorList.

Controller
See InfoPower TwwController property

CustomColors
This property is equivalent to the CustomColors property described in TfcColorList.
(See TfcColorList CustomColors).

Chapter 4 - 1stClass Component Reference, TfcColorCombo - Added Properties 37

DataField
Optional: This property contains the name of the field that you want to bind the
TfcColorCombo to. You can bind it to a string or integer data type. If you do not
wish to bind the colorcombo to a table field, then leave both the Datafield and
Datasource properties blank. The default value is blank (unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the ColorCombo control with data. The default value is blank (unbound).

Data Type: TDataSource

DropDownCount
The DropDownCount property determines how many entries will appear in the
dropdown color list box.

Data Type: Integer

DropDownWidth
This DropDownWidth property determines how wide the drop-down color list box is
in pixels. The default value is 0, which will automatically size the box based on the
width of the control.

Data Type: Integer

Frame
See TfcEditFrame for more information on this property.

Data Type: TfcEditFrame

SelectedColor
Use SelectedColor to retrieve or set the current color selection. Set the value of
SelectedColor to the color of the item to be selected. If no item is selected, the value
is clNullColor, which is the default value.

Data Type: TColor

ShowButton
When this property is set to False, then the ColorCombo’s bitmap button is not
shown. The default value is True.

Data Type: boolean

38 Chapter 4, 1stClass Component Reference, TfcColorCombo - Added Events

ShowMatchText
When this property is set to True, the ColorCombo will perform ‘Quicken’ style
incremental searching. As the user enters text, the control will simultaneously search
and display the matching text in the control. If the property is set to False and the
ColorCombo is dropped down, then the ColorCombo will toggle to the next item that
starts with the letter entered. The default value is True.

Data Type: boolean

Style
This property determines the style of the color combo box. The csDropDown Style
creates a drop-down list with an edit box in which the user can enter text. The
csDropDownList Style creates a drop-down list with no attached edit box, so the user
can’t edit an item or type in a new item. If the property ShowMatchText is True, the
user is permitted to type in a valid choice.

Data Type: TfcComboStyle

Valid Values: fcCombo.csDropDown, fcCombo.csDropDownList

UnboundAlignment
This property is only respected when the DataSource and DataField properties are
blank. When this property is set to True, then the text in the ColorCombo’s will be
aligned to the left or the right depending on your setting.

Data Type: TLeftRight

Valid Values: taLeftJustify, taRightJustify

Added Events

OnAddNewColor
See TfcColorList’s OnAddNewColor event.

OnCloseColorDialog
This will be called whenever the colordialog closes. The parameters for this event are
as follows:

Sender:TObject Color listbox control that is associated with this
event.

Dialog:TColorDialog Color dialog associated with this event.

MResult:TModalResult Modal Result of the color dialog.

var Accept:boolean Accepting the entry will put the combo in edit
mode and the SelectedColor will be set to the
color dialog value.

Chapter 4 - 1stClass Component Reference, TfcColorCombo - Added Methods 39

OnCloseUp
This event is fired immediately after the drop-down list closes. Use this event to
perform your own custom action after the drop-down list closes. The parameters for
this event are as follows:

Sender:TObject TfcColorCombo control that is associated with this
event.

Select: boolean This value is True if the user is making a selection. If
the user is escaping out of the drop-down list without
making a selection, then the value of Select is False.

OnDropDown
This event is fired immediately before the color list is dropped down. The parameters
for this event are as follows:

Sender:TObject TfcColorCombo control that is associated with this
event.

OnFilterColor
This will be called whenever the color listbox is dropped down. For more
information on this event, see TfcColorList’s OnFilterColor event.

OnInitColorDialog
This will be called before the ColorDialog is executed to allow you to further
customize the ColorDialog before it is shown.

The parameters for this event are as follows:

Sender:TObject Color listbox control that is associated with this event.

Dialog:TColorDialog ColorDialog associated with this event.

Added Methods

CloseUp
Call this method if you wish to force the drop-down list to close. Set Accept to True
if you would like the control to accept the last selected entry.
procedure CloseUp(Accept: boolean); override;

DrawInGridCell
Call this method if you wish to use the ColorCombo information to accurately draw
the selected item in an InfoPower grid.
Procedure DrawInGridCell(ACanvas:TCanvas; Rect:TRect;
 State:TGridDrawState); override;

40 Chapter 4, 1stClass Component Reference, TfcColorCombo - How To

DropDown
Call this method if you wish to force the combo to drop-down the color list selections
Procedure DropDown; override;

ExecuteColorDialog
Displays the Microsoft color dialog to the end-user so they can pick a color from this
dialog. The return value is False if the user cancelled the dialog without making a
selection.
Function ExecuteColorDialog: boolean; virtual;

GetColorFromRGBString
Converts the color string specified by RGBString to a TColor value, referred to by
AColor. Returns True if the operation was successful. RGBString is of the format
RGB:ddd,ddd,ddd, where ddd represents a number between 0 and 255.
Function GetColorFromRGBString(RGBString:String;
 var AColor: TColor): boolean;

IsCustomColor
Returns True if the color referred to by parameter s is in the combo’s custom colors
list. See also the CustomColors property of the TfcColorCombo.
function IsCustomColor(s: string): boolean;

IsDroppedDown
Call this method when you want to determine if the dropdown control is visible.
Function IsDroppedDown:boolean; override;

RefreshList
This method will cause the list of colors in the drop-down color listbox to reload.
procedure RefreshList; virtual;

How To

Iterate through all of the filtered colors in the color combo.
When using the OnFilterColor event, some colors filtered out of the AllColors property.
To iterate through the list of valid colors in the fcColorCombo listbox control you would
use the items property as in the following example:

procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
 with (fcColorCombo1.ListBox.Items) do
 for i:= 0 to Count-1 do
 ListBox1.Items.Add(Names[i]);
end;

Chapter 4 - 1stClass Component Reference, TfcColorCombo - Tips 41

Initialize an unbound ColorCombo control.
To initialize an unbound TfcColorCombo control just set the SelectedColor property to
the corresponding color value.

Display the color boxes of the TfcColorCombo in all rows of an InfoPower
Grid.
When you embed the ColorCombo into an InfoPower grid, the color box for the control is
displayed in the control, but not necessarily for the other rows of the grid. In InfoPower
3000 you can just check the Control Always Paints checkbox in the Edit Control tab page
of the Grid’s Selected property dialog.

For InfoPower 2000, the following code allows you to paint the color box in all the rows of
the grid for the column containing the ColorCombo. It uses a public procedure named
“fcGetControlInGrid”, declared in fccombo, to retrieve the control associated with a
column in the grid.

procedure TForm1.wwDBGrid1DrawDataCell(Sender: TObject;
 const Rect: TRect; Field: TField; State: TGridDrawState);
var Control: TfcCustomCombo;
begin
 Control := fcGetControlInGrid(self,
 Sender as TwwDBGrid, Field.FieldName);
 if Control <> nil then Control.DrawInGridCell((Sender as
 TwwDBGrid).Canvas, Rect, State);
end;

Tips

• See the TfcColorList’s properties for details on customizing the drop-down
color control.

42 Chapter 4, 1stClass Component Reference, TfcColorList - Ancestor

TfcColorList

 Use the 1stClass TfcColorList to provide the end-user with the ability to select a
color value or a color string from a listbox.

TfcColorList control

The colors displayed in the listbox are defined by the Options property. You can further
customize the colors by adding your own colors through the TfcColorList’s CustomColors
property. Use the SortBy property to control the order of the colors.

Use the OnAddNewColor event to allow your end-users to add new colors to the list, or to
filter out colors based on some criteria you define in the event.

Ancestor
TWinControl
 TCustomListBox
 TfcCustomColorList
 TfcColorList

Added Properties

Alignment
Determines the alignment of the text in the non-color portion of the listbox.

Data Type: TLeftRight
Valid Values: taLeftJustify, taRightJustify

AllColors (Runtime Only)
This property is a TStringList where the Name is the string representation of the
color and the Value is the Color in BGR (Blue, Green, Red) hex values. You can use
the Names or Values properties of the TStringList to access these values. AllColors
will contain all the possible color/value pairs in the listbox including the ones that the
OnFilterColor event filters out. If you are using the OnFilterColor event and wish to
reference a given color in the color listbox by number, then you should use the Items
property instead.

Chapter 4 - 1stClass Component Reference, TfcColorList - Added Properties 43

The example below illustrates how to copy all of the possible names in the color
listbox control to a standard Delphi TListbox named Listbox1.
procedure TForm1.fcShapeBtn1Click(Sender: TObject);
var i:integer;
begin
 for i:= 0 to fcColorList1.AllColors.Count -1 do
 Listbox1.Items.Add(fcColorList1.AllColors.Names[i]);
end;

To get the color value as a TColor based on an index, see the ColorFromIndex
method.

ColorAlignment
Determines the alignment of the color relative to the text.

Data Type: TLeftRight
Valid Values: taLeftJustify, taRightJustify

ColorMargin
 Then Default ColorMargin is 2. You can change this value to reduce or enlarge the
padding around the color rectangle.

Data Type: Integer

ColorWidth
When the ColorWidth property is set to 0, the width of the color rectangle will be
calculated based on the ItemHeight property. Otherwise the width of the color
rectangle will be as wide as you set it.

Data Type: Integer

CustomColors
This property determines what custom colors you can add to the color listbox. Each
custom color is represented as a string of the form ColorName = HexValue. For
example the following string sets the first custom color. The hex value is in the
Delphi BGR format. In order for the listbox to display these colors, Options |
ccoShowCustomColors must be set.

SkyBlue = CC9932

Data Type: TStringList

GreyScaleIncrement
This property determines how many shades of gray that will show up in the control
when Options | ccoShowGreyScale is True. The ColorList uses this value to
increment the shades of grey from 0 to 255.

44 Chapter 4, 1stClass Component Reference, TfcColorList - Added Properties

Data Type: Integer
Valid Values: A Positive Number

ItemIndex (Runtime Only)
Generally you should use SelectedColor instead, however you can use ItemIndex to
select an item at runtime. Set the value of ItemIndex to the index of the item to be
selected. The ItemIndex of the first item in the list box is 0. If no item is selected, the
value is -1, which is the default value.

Data Type: Integer
Valid Values: -1, 0, or a positive integer.

Items (Runtime Only)
This property is a TStringList using the Name=Value form, where Name is the string
representation of the color and the Value is the Color in BGR (Blue, Green, Red) hex
values. You can use the Names or Values properties of the TStringList to access
these values. While AllColors will contain all the possible color/value pairs in the
listbox, the actual listbox can contain much less colors if the OnFilterColor event
filters them out. If you are using the OnFilterColor event and wish to reference a
given color in the color listbox by number, then you should use the Items property
instead. For example to get the name of the first item in the list you could reference it
using code like:

ColorName := fcColorList1.Items.Names[0];

To get the color value as a TColor based on an index, see the ColorFromIndex
method.

Data Type: TStringList

NoneString
When Options | ccoShowColorNone is True, the default string for clNone is “None”.
Use this property to override this string with your own descriptive name.

Data Type: String

Options
This property is a set of boolean flags that control the display of the colors in the
ColorList control.

Data Type: TfcColorListBoxOptions
Valid Values: ccoShowSystemColors, ccoShowColorNone, ccoShowCustomColors,
ccoShowStandardColors, ccoShowColorNames, ccoShowGreyScale,
ccoGroupSystemColors

Chapter 4 - 1stClass Component Reference, TfcColorList - Added Properties 45

ccoShowSystemColors
When set, the ColorList will display system colors in the listbox control. (i.e.
clBtnFace, clWindow, etc.)

ccoShowColorNone
When set, the ColorList will display the clNone color in the listbox control. Use
the NoneString property to override the display of the text.

ccoShowCustomColors
When set, colors defined in the CustomColors stringlist property will be
displayed in the color listbox control.

ccoShowStandardColors
When set, the ColorList will display the standard windows colors in the listbox
control. Default is True.

ccoShowColorNames
When set, the ColorList will display the names of the colors in the listbox control
along with the color rectangles. When set to False, only the color rectangle will
be visible. Default is True.

ccoShowGreyScale
When set, the ColorList will add a series of GreyScale colors to the listbox
control incrementing the GreyScaleIncrement property from 0 to 255, where 0 is
Black and 255 is White.

ccoGroupSystemColors
When set, the SystemColors will be grouped separately from the other colors,
when the SortBy property is set to csoByName or csoNone.

SelectedColor
Use SelectedColor to select a color at runtime or design time. Set the value of
SelectedColor to the color of the item to be selected. If no item is selected, the value
is clNullColor, which is the default value.

Data Type: TColor

SortBy
This property determines how the ColorList is Sorted.

Data Type: TfcSortByOption

Valid Values: (csoNone, csoByName, csoByRGB, csoByIntensity)

46 Chapter 4, 1stClass Component Reference, TfcColorList - Added Events

csoNone
When SortBy is set to csoNone, the list is not sorted.

csoByName
When SortBy is set to csoByName, the list is sorted by the color name. Note: If
Options | ccoGroupSystemColors is True, then the SystemColors are sorted as a
separate group from the all of the other colors.

csoByRGB
When SortBy is set to csoByRGB, the list is sorted by the RGB values. Using this
property will group similar colors together based on the color value.

csoByIntensity
When SortBy is set to csoByIntensity, the list is sorted based on the average of
the RGB values, so the most vivid colors will be first and the more faded, lighter
ones will be near the end.

Added Events

OnAddNewColor
Occurs when the end-user adds a new color to the color listbox control by assigning to
the SelectedColor property a value that is not in the list of colors. You can use this
event to not allow new colors to be added to your color listbox, or to change the name
of new colors that are being added to the listbox. The default name for a new color is
of the form: RGB: 128, 128, 128.

The parameters for this event are as follows:

Sender:TObject Color listbox control that is associated with this event.

AColor:TColor Color that was not found in the list.

var AColorName:String Rename the new color to a more meaningful color name.

var Accept:boolean Set this variable to True to accept the entry, and False
otherwise.

Example: The following code will prompt the user for confirmation to add the new
RGB Color to the list. Here you could prompt the end user to enter a color name for
the new color that is being added.
procedure TForm1.fcColorList1AddNewColor(Sender: TObject;
 AColor: TColor; var AColorName: String; var Accept: Boolean);
begin
 if Pos('RGB:',AColorName) =1 then begin
 if MessageDlg('Add New Color?', mtConfirmation,
 mbYesNoCancel, 0)=mrYes then
 Accept := True

Chapter 4 - 1stClass Component Reference, TfcColorList - Added Methods 47

 else Accept := False;
 end;
end;

OnFilterColor
Occurs whenever the list is reinitialized, refreshed or resorted.

The parameters for this event are as follows:

Sender:TObject Color listbox control that is associated with this event.

AColor:TColor Color value.

AColorName:String Color name.

var Accept:boolean Set this variable to True to accept the entry, and False
otherwise.

Example: The following code will allow filter all colors that have red as part of the
color name.
procedure TForm1.fcColorList1FilterColor(Sender: TObject;
 AColor: TColor; AColorName: String; var Accept: Boolean);
begin
 if Pos('Red',AColorName) = 0 then Accept := False
end;

Added Methods

ColorFromIndex
Call this function to retrieve the specified color in the Items List, based on the passed
in Index of the listbox control.

Function ColorFromIndex(Index: Integer):TColor; virtual;

InitColorList
Call this method to reload and reinitialize the ColorList.

procedure InitColorList; virtual;

SortList
Call this method to sort the color list based on the SortBy property.

procedure SortList; virtual;

48 Chapter 4, 1stClass Component Reference, TfcColorList - How To

How To

Allow only a limited set of colors
There are a couple of ways to make available only a limited set of colors for the end user.
One way is to use the OnFilterColor event. However, the easiest way to restrict your color
choices is to use the Options | ccoShowCustomColors property. Here are the steps.

1. Set the Options | ccoShowStandardColors , Options | ccoShowSystemColors, and
Options | ccoShowGreyScale property to False.

2. Set the Options | ccoShowCustomColors property to True.

3. Click on the CustomColors StringList editor and add the colors that you wish to the
CustomColors list. (For a complete list of the color values and color dialog color
values see the colors.txt file in the demos directory)

 For Example:
Red=0000FF
Blue=FF0000
Green=00FF00
Yellow=00FFFF

Align the color box on the right side
To align the Color Box on the right side of the text, just set the ColorAlignment property
to taRightJustify.

Retrieve all the user’s color selections when MultiSelect is True
To create a multiselectable list of colors, just set the Multiselect property to True and the
ExtendedSelect property to True if you wish to have Shift Select capability. Then in order
to iterate through the selected colors, you just iterate through all of the items of the color
list box and check the selected property. The following example will display each of the
multiselected colors of the color list box control.
procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
 for i:= 0 to fcColorList1.Items.Count-1 do
 if (fcColorList1.Selected[i]) then
 ShowMessage(ColorToString(fcColorList1.ColorFromIndex(i)));
end;

Add color dialog support to add new colors to the color list.
You may wish to allow your end-users to add their own custom colors to this list at
runtime. The easiest way to do this is to execute a color dialog when the end-user double
clicks on the listbox and chooses a color that is not in the list of colors.

1. Set the Options | ccoShowStandardColors to True and Options |
ccoShowCustomColors to True.

Chapter 4 - 1stClass Component Reference, TfcColorList - How To 49

2. Click on the CustomColors StringList editor and add the default color dialog colors to
the list. For example, these are the default Color Dialog Colors:
LightCoral=8080FF
Brick=404080
DarkBrown=000040
GoldenRod=80FFFF
Coral=4080FF
Orange=0080FF
Sienna=004080
MintGreen=80FF80
LawnGreen=00FF80
DarkGreen=004000
OliveDrab=408080
LightGreen=80FF00
LighterGreen=40FF00
ForestGreen=408000
DarkForestGreen=404000
PowderBlue=FFFF80

DeepSeaBlue=804000
LighterTeal=808040
SkyBlue=FF8000
SlateBlue=C08000
LavenderBlue=FF8080
MidnightBlue=A00000
BluishBlack=400000
Pink=C080FF
Lavender=C08080
Redwood=400080
PurplishBlack=400040
NeonPink=FF80FF
LipstickRed=8000FF
Violet=FF0080
Indigo=800040

50 Chapter 4, 1stClass Component Reference, TfcColorList - How To

3. Now drop a TColorDialog onto your form, and set the ColorDialogOptions |
cdPreventFullOpen to False if you want your end-users to add any additional colors
to the list. Otherwise, set it to True. Then add the following code to the OnDblClick
event of the TfcColorList.
Procedure TForm1.fcColorList1DblClick(Sender: TObject);
begin
 //Initialize Color Dialog to list’s selected color.
 ColorDialog1.Color := (Sender as TfcColorList).SelectedColor;

 if ColorDialog1.Execute then
 (Sender as TfcColorList).SelectedColor
:=ColorDialog1.Color;
end;

4. Now add fcCommon to your form’s uses clause, and put the following code in the
OnAddNewColor event.
Procedure TForm1.fcColorList1AddNewColor(Sender: TObject;
 AColor: TColor; var AColorName: String; var Accept:
boolean);
var ColorIndex:Integer;
begin
 with ColorDialog1,CustomColors do begin
 ColorIndex := fcValueinList(IntToHex(-1,8),CustomColors);

 if ColorIndex <> -1 then //Unused Custom Color found
 begin
 if fcValueinList(
 IntToHex(AColor,6),CustomColors)=-1 then
 Values[Names[ColorIndex]]:= IntToHex(AColor,6);
 Accept := True; //Add to color listbox control
 end
 else Accept := False; //Don’t add if CustomColors is full
 end;
end;

Drag a color to change the font color of a label
The following example demonstrates how you can drag colors from the color list to
change the font color of any control in your application.

This can be accomplished via the following steps:

1. Add a TfcLabel component to your form and set the following properties:
Caption = ’My Label’ (Set to whatever text you wish to display)

2. Put the following code in the TfcLabel’s OnDragOver event.
Procedure TForm1.Label1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: boolean);
begin

Chapter 4 - 1stClass Component Reference, TfcColorList - Tips 51

 if (Source is TfcColorList) then Accept := True;
end;

3. Put the following code in the TfcLabel’s OnDragDrop event.

Procedure TForm1.Label1DragDrop(Sender, Source: TObject;
 X, Y: Integer);
begin
 if (Source is TfcColorList) and (Sender is TControl) then
 TEdit(Sender).Font.Color :=
 (Source as TfcColorList).SelectedColor;
end;

4. Finally, set the DragMode of the TfcColorList to dmAutomatic.

Tips

• See the colors.txt document in the demos directory for a sample list of colors
for the CustomColors property.

52 Chapter 4, 1stClass Component Reference, TfcDBImager - Ancestor

TfcDBImager

 The 1stClass TfcDBImager Control allows you to display images stored in your
database. This versatile control can be used in a TDBCtrlGrid as well as many of
InfoPower’s Grid and DataInspector controls. Store and display jpgs, bitmaps, metafiles,
and icons into your database blob fields.

TfcDBImager control

Use the BitmapOptions to add special effects to the image as it is displayed. Set the
DrawStyle property to specify if the image is stretched, tiled, centered, etc. For more info
on similar properties see TfcImager.

Ancestor
TCustomControl
 TfcDBCustomImager
 TfcDBImager

Added Properties
This component has all of the properties of the TfcImager, plus the following additional
properties:

BitmapOptions
Use Bitmap Options to set one of many different effects that can be applied to the
Image. These changes are not stored in the database. However, you can reference the
WorkBitmap property to access the changed bitmap. When used in a grid or a

Chapter 4 - 1stClass Component Reference, TfcDBImager - Added Events 53

control that handles the csPaintCopy control state. Only the active image will have
the BitmapOptions settings applied to it.

DataField
This property contains the name of the field that you want to bind the TfcDBImager
to. The default value is blank (unbound).

Data Type: String

DataSource
This property contains the name of a TDataSource component that provides the
TfcDBImager control with data.

Data Type: TDataSource

PictureType
 Defines the type of image that is attached to this particular set of different effects that
can be applied to the Image. If you wish to store and display jpgs in the database
Data Type: TfcImagerPictureType
Valid Values: fcptBitmap, fcptJpg, fcptMetafile, fcptIcon
fcptBitmap Blob field is a Bitmap
fcptJpg Blob field is a Jpg
fcptMetafile Blob field is a Metafile
fcptIcon Blob field is a Icon

Picture (Runtime Only)
This property contains the actual graphic that is being displayed.

Data Type: TPicture

Added Events

OnCalcPictureType
Occurs when a picture is loaded into the TfcDBImager and when it is being painted.
Use this event only if you are storing different image types in the same field of the
database. This event requires you to know based on some other field what type of
image is stored for the field attached to the TfcDBImager.

The parameters for this event are as follows:

ImageControl:TfcDBImager Image control associated with this event.

var PictureType:TfcImagerPictureType Set this variable to the associated PictureType
for this blob field’s stored image.

54 Chapter 4, 1stClass Component Reference, TfcDBImager - How To

Example: In the following code wwTable1 points to a table with two fields. The
“PictureType” field describes the type of image that was loaded into the blobfield
associated with this TfcDBImager control.
procedure TForm1.fcDBImager1CalcPictureType(ImageControl:
 TfcDBImager; var PictureType: TfcImagerPictureType);
begin
 case wwTable1.FieldByName('PictureType').AsInteger of
 0:PictureType := fcptBitmap;
 1:PictureType := fcptjpg
 2:PictureType := fcptMetafile;
 3:PictureType := fcptIcon;
 end;
end;

How To

Integrate the DBimager into a TDBCtrlGrid
The Simply drop this in a TDBCtrlGrid. For additional indication of which image
has the focus, set the BitmapOptions properties accordingly.

Integrating a TPicture dialog with a TfcDBImager
To allow the end-user to add/modify the current image, you can either add a
popupmenu or respond to a dbl-click event.
procedure TForm1.fcDBImager1DblClick(Sender: TObject);
var
 blobstream:TBlobStream;
 photostream:TFileStream;
begin
 with (Sender as TfcDBImager),DataSource.DataSet do
 try
 if openpicturedialog1.execute then begin
 Edit;
 photostream:=tfilestream.create(openpicturedialog1.filename,
 fmopenread or fmsharedenywrite);
 blobstream :=TBlobstream.create(FieldByName(DataField) as
 TBlobField,bmwrite);
 try
 blobstream.copyfrom(photostream,photostream.size);
 except
 photostream.free;
 blobstream.free;
 Dataset.Cancel;
 end;
 end;
 if (State in [dsInsert,dsEdit]) then Post; // Optional
 except
 ShowMessage('Invalid Picture!');
 end;
end;.

Chapter 4 - 1stClass Component Reference, TfcDBTreeNode (Class) - Ancestor 55

TfcDBTreeNode (Class)
TfcDBTreeNode describes a painted node in a TfcDBTreeView control. Each node in a
tree view control consists of a number of attributes, and can itself contain 0 or more nodes.
TfcDBTreeNode is not a design time component you see in your IDE palette, but is
created and manipulated internally by the TfcDBTreeView. Every time the tree is
repainted, the memory associated with the tree nodes is disposed and new ones are re-
allocated. For this reason, you should not save a TfcDBTreeNode’s pointer value into your
own data structures. The pointer would become invalid the next time the tree is repainted.
Instead you should reference a TfcDBTreeNode only in the context of the TfcDBTreeView
events.

Ancestor
TObject

TfcDBTreeNode

Added Properties

DataLink
DataLink indicates the TDataLink associated with the node.

Data Type: TDataLink

DataSet
DataSet indicates the TDataSet associated with the node.

Data Type: TDataSet

Expanded
Expanded indicates if the node has been expanded so that its children are displayed.

Data Type: boolean

HasChildren
HasChildren returns True for all nodes except nodes tied to the last datasource. The
last datasource is either defined by the DataSourceLast property, or the last
datasource specified in the DataSources property.

Set this property if you wish to define which nodes have children.

Example: See the TfcDBTreeView how-to topic on disabling the expand icon (+) for
specific nodes.

Data Type: boolean

56 Chapter 4, 1stClass Component Reference, TfcDBTreeNode (Class) - Added Properties

Hot
Hot returns True if a node is currently being hot-tracked. The text of a hot-tracked
node is displayed with a blue underlined font. You can set this to False to selectively
disable a node from being displayed as a hot-track node. See also the
TfcDBTreeView Options | dtvoHotTracking property.

Example: See the TfcDBTreeView how-to topic “How to control which specific nodes
are displayed as a hot-track”.

Data Type: boolean

ImageIndex
ImageIndex specifies which image is displayed in the tree. ImageIndex is the index
from the image list specified by the tree’s Images property. If the tree’s Images
property is not assigned then this property does nothing. Use the TfcDBTreeView
OnCalcNodeAttributes event to customize the image based on run-time criteria.

Example: The following example displays the first image from the tree’s Images
when the ‘Country’ field is 'US', and the 2nd image otherwise.
 if Node.DataSet = CustomersTbl then begin
 if Node.DataSet.FieldByname('Country').asString ='US'
then
 Node.ImageIndex:= 0
 else Node.ImageIndex:= 1;
 end;

Data Type: integer

Level
Level indicates the level of indentation of a node within the TfcDBTreeView control.

The value of Level is 0 for nodes on the top level. The value of Level is 1 for their
children, and so on.

Data Type: integer

MultiSelected
MultiSelected returns True if the node has been multi-selected. See the
MultiSelectAttributes for information on enabling multi-select in the tree.

Data Type: boolean

Parent
Parent identifies the parent node of the tree node. A parent node is one level higher
than the node and contains the node as a subnode.

Data Type: TfcDBTreeNode

Chapter 4 - 1stClass Component Reference, TfcDBTreeNode (Class) - Added Methods 57

Selected
Selected returns True if the node is the active node.

Data Type: boolean

StateIndex
StateIndex specifies which state image is displayed in the tree. If the tree is displaying
both state images and images, then the image associated with StateIndex is displayed
before the image specified by ImageIndex. StateIndex is the index from the image list
specified by the tree’s StateImages property. If the tree’s Images property is not
assigned then this property has no effect. If the tree is displaying a checkbox in the
node, then the state image is not displayed. Use the TfcDBTreeView
OnCalcNodeAttributes event to customize the image based on run-time criteria.

Example: The following example displays the first image from the tree’s StateImages
when the ‘Country’ field is 'US', and the 2nd image otherwise.
 if Node.DataSet = CustomersTbl then begin
 if Node.DataSet.FieldByname('Country').asString ='US' then
 Node.StateIndex:= 0
 else Node.StateIndex:= 1;
 end;

Data Type: integer

Text
Text refers to the displayed text for the node. Use the TfcDBTreeView’s
DisplayFields property to customize the appearance of the node’s text.

Data Type: String

Added Methods

GetFieldValue
Use GetFieldValue to retrieve the node’s data. You can refer directly to the dataset to
retrieve field information for the active node or its parents. However to get the
inactive node’s field information you need to use this method.
function GetFieldValue(FieldName: string): Variant;

Example: The following updates a label control when the mouse is moved over a node
relating to a TTable object named CustomersTbl. Note that the mouse may not be
necessarily over the active record in the dataset, so using the TDataSet FieldByName
method would not work in this case.

58 Chapter 4, 1stClass Component Reference, TfcDBTreeNode (Class) - Added Methods

procedure Tform1.fcDBTreeView1MouseMove(
 TreeView: TfcDBCustomTreeView; Node: TfcDBTreeNode;
 Shift: TShiftState;
 X, Y: Integer);
begin
 if (Node<>Nil) and (Node.DataSet = CustomersTbl) then
 Label1.Caption := Node.GetFieldValue('Company');
end;

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Ancestor 59

TfcDBTreeView

 1stClass' advanced and sophisticated data-bound treeview can single-handedly
navigate all the tables and queries in your master/detail relationships. You just instruct
the component which datasources you wish for it to display as a tree using the
DataSourceLast and DataSourceFirst properties, or using the DataSources property.

In reality, the TfcDBTreeView is a live window to your datasource’s data. As a result,
operations on the dataset are reflected in the TreeView. For instance, if you navigate the
datasource, you are also navigating the tree. Likewise if you scroll the TreeView, you are
also scrolling the dataset. Similarly if you apply a filter or set a range on the dataset, the
TreeView instantly shows only the matching subset of records. To change the collating
order of the nodes in the tree, you simply change your dataset’s Index (if using a TTable),
or change the SQL’s order by clause (if using a TQuery). To search for a node in the tree,
call the TDataSet Locate method to search for a record in the dataset.

Since the tree is live and buffered, it also allows for fast loading even when going against
large tables.

The TfcDBTreeview can expand only one node per level at a time. If you expand or move
to a sibling node, the previously expanded node in the same level will automatically
collapse. This restriction is necessary since the tree is a live window using TDataSources,
and as a result has access to only the detail records for the currently selected node.

Use the DisplayFields property to define the text displayed for each node’s data.

Use the MultiSelectAttributes property to enable multi-selection within the tree.

Use the OnCalcNodeAttributes event to customize the painting of each node in the tree.

Use the Header property to associate a header control with a self-referencing tree. This
header control defines the column information within the tree. See the how-to topics for
information on setting up a self-referencing tree.

Ancestor
TWinControl
 TfcDBCustomTreeView

 TfcDBTreeView

Required supporting components
TDataSource

60 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Required property assignments

Required property assignments
DataSourceLast or DataSources, DisplayFields

Added Properties

ActiveDataSet (Runtime only)
ActiveDataSet is the TDataSet corresponding to the currently selected node. Each
node in the tree is associated with a dataset as defined by the DataSourceLast,
DataSourceFirst, and DataSources properties. See also the method
MakeActiveDataSet for a convenient way to change the active tree level based on a
specified dataset.

Data Type: TDataSet

ActiveNode (Read only, Runtime only)
ActiveNode is the currently selected node.

Note: Internally this property is updated whenever the treeview is repainted. After
this update, the previous ActiveNode value is no longer valid. Therefore you should
never save this value into one of your own variables and later refer to it, as the
memory for the previous ActiveNode would have been freed.

Data Type: TfcDBTreeNode

Canvas (Runtime only)
Provides access to the canvas. Use the Canvas property to paint to the canvas from the
OnCalcNodeAttributes and OnDrawText event handlers.

Data Type: TCanvas

DataSourceFirst
Specifies the datasource associated with the tree’s root nodes. If this property is
unassigned, and the DataSourceLast property is assigned, then the tree will
recursively traverse the master datasources to automatically compute this value.
During traversal, the tree examines either the TTable.MasterSource property or the
TQuery.DataSource property. If you are using a 3rd party engine which does not have
a DataSource or a MasterSource property in its TDataSet, then you should instead
assign the tree’s DataSources property, and leave the DataSourceFirst and
DataSourceLast properties unassigned.

Data Type: TDataSource

DataSourceLast
Specifies the datasource associated with the tree’s terminal nodes. You must set
either this property or the DataSources property for the tree to display any nodes.

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Properties 61

Data Type: TDataSource

DataSources
Specifies all the datasources associated with the tree. You must set either this
property or the DataSourceLast property for the tree to display any nodes. This
property’s format is a semi-colon delimited string. For instance to bind the tree to
three datasources (DataSource1, DataSource2, DataSource3), you would assign the
following property value…

DataSource1;DataSource2;DataSource3

The above value uses DataSource1 for the root nodes, DataSource2 for the child
nodes of the root nodes, and so on.

If your datasources are on a different form than this component, then use the ‘.’
notation such as

Form1.DataSource1;Form1.DataSource2;Form1.DataSource3

Data Type: String

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

DisplayFields
This property defines the text and display format for each level in the tree. The
property is a TStringList, with each string item corresponding to a display format for
a given level. You should enclose field names in double quotes. The remaining
characters are treated literally.

Example: Consider the following property assignment to DisplayFields.
"Company"
"SaleDate", "AmountPaid"
("Qty") "LookupPartDescription" at "LookupPartPrice"

This would result in the following display in the tree.

62 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Properties

Note: If the DisplayFields is left blank for a given level of the tree, then the first field
in the TDataSet is displayed.

Note: If the Header property is assigned, then this property is ignored as the display
information then comes from the header definition.

Data Type: TStringList

Header
Assign the Header property if you have built a self-referencing data-bound tree, and
you wish to associate a header control with the tree. For further information, see the
TfcTreeHeader component, as well as the TfcDBTreeView how-to topics.

Data Type: TfcTreeHeader

Imager
Set this property to a TfcImager component to paint a background image in the
TfcDBTreeView. The image can be painted as a tile or it can be stretched in the tree’s
window. See the TfcImager DrawStyle property.

Note: After attaching a TfcImager to the tree, you may wish to manipulate its
properties in the IDE environment. You will need to click on the top-left corner of the
treeview to have the object selected at design-time. Alternatively you can select the
TfcImager from the object inspector.

Data Type: TCustomImageList

Images
Determines which image list is associated with the tree view. Use Images to provide
a customized list of bitmaps that can be displayed to the left of a node’s label.
Individual nodes specify the image from this list that should appear by setting their
ImageIndex property. Use the OnCalcNodeAttributes event to customize the
ImageIndex dynamically based on the node or record information.

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Properties 63

Data Type: TCustomImageList

InactiveFocusColor
Specifies the background color of the node that is selected when the treeview does not
have focus. If the tree’s Options | dtvoHideSelection property is True then this
property is ignored when painting the selected node. If MultiSelectAttributes |
Enabled is True, then this color is also used to paint the multi-selected nodes when
the tree does not have focus.

Data Type: boolean

LastVisibleDataSet (Runtime only)
Returns the TDataSet associated with the deepest expanded nodes. Do not confuse
this property with ActiveDataSet, which correlates to the TDataSet associated with
the currently selected node.

Data Type: TDataSet

LevelIndent
Set this property to change the number of pixels used to indent each level in the tree.
This property defaults to 21 pixels.

Data Type: Integer

LineColor
Set this property to change the color of the connecting lines in the tree.

Data Type: TColor

MultiSelectAttributes
Specifies the attributes for enabling and controlling multi-selection in the tree. This
property contains the following sub-properties.

Data Type: TfcDBMultiSelectAttributes

AutoUnselect
When True, the tree will automatically unselect all previously selected nodes
when the user clicks on a node without using the Ctrl key. In addition the
clicked node is selected.
Data Type: boolean

Enabled
When True, the tree will automatically use Ctrl-Click to select/deselect a node.
This provides a convenient way to perform multi-selection. To allow the user to
multi-select with a checkbox set both the Enabled and MultiSelectCheckbox
properties to True.
Data Type: boolean

64 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Properties

MultiSelectCheckbox
When True, a checkbox is displayed in each node to allow the end-user a
convenient way of selecting nodes. The space key will also select the node when
this property is True.
Data Type: Boolean

MultiSelectLevel
Set this to the level you wish to enable multi-selection for. Defaults to 0, which
indicates only the root nodes can be selected. If set to –1, then any node in any
level can be selected.
Data Type: integer

MultiSelectList (Runtime only)
Reference this property to access the records that have been multi-selected by the end-
user. This property is an array of TfcMultiSelectItem
TfcMultiSelectItem = class
 Bookmark: TBookmark;
 DataSet: TDataSet;
end;

Bookmark is a TBookmark associated with the selected record. DataSet is the dataset
associated with the selected record. The order of this list is the order the selections
were made. If you wish for the list sorted based on the dataset’s order, then call the
SortMultiSelectList method before iterating through the list.

Example: See how-to topic on iterating through the list of multi-selected records.

Data Type: Array of TfcMultiSelectItem

MultiSelectListCount (Runtime only)
This property contains the number of records selected by the user. See the
MultiSelectList property to retrieve the actual records.

Data Type: Integer

Options
This property contains a set of boolean values that control the appearance and
behavior of the tree

Data Type: Set of TfcDBTreeViewOption

Valid Values: dtvoKeysScrollLevelOnly, dtvoAutoExpandOnDSScroll,
dtvoExpandButtons3D, dtvoFlatCheckBoxes, dtvoHideSelection, dtvoRowSelect,
dtvoShowNodeHint, dtvoShowButtons, dtvoShowLines, dtvoShowRoot,
dtvoShowHorzScrollBar, dtvoShowVertScrollBar, dtvoHotTracking (described
below).

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Properties 65

dtvoKeysScrollLevelOnly
This property controls the scrolling behavior when the user enters one of the
following keys (Up, Down, PageUp, PageDown). When True, the tree will scroll
only within the current level. When it reaches the first sibling node or the last
sibling node, it will stop scrolling. When False, the tree will auto-collapse the
parent node when the user scrolls before the first sibling node, or scrolls past the
last sibling node. This property defaults to True.

dtvoAutoExpandOnDSScroll
Set to True, to force the record correlating with the scrolled datasource to be
selected in the tree by expanding nodes if necessary. A datasource can be
scrolled by another visual control such as a DBGrid or a DBNavigator.

When set to False, the tree will still synchronize with the datasource, but the tree
will not auto-expand the tree. Thus the scrolled dataset node may not be visible
in the tree in this case. Defaults to True.

dtvoExpandButtons3D
Set to True to display the expand and collapse buttons as three-dimensional
buttons. Defaults to False.

dtvoFlatCheckBoxes
Set to True to display flat checkboxes. Defaults to False, which displays
checkboxes in the tree-view as three-dimensional buttons.

dtvoHideSelection
This property controls how a treeview displays the selected node when it does not
have the focus. Set to True to hide the selection when the tree does not have
focus. If set to False, the tree displays the selected node in the color as defined
by the InactiveFocusColor property. Defaults to True.

dtvoRowSelect
Set to True to highlight the entire row to the instead of just highlighting the text.
If set to False, only the text is highlighted when a node is selected. Defaults to
False.

dtvoShowNodeHint
Set to True to display a hint window when the text for the node will not fit in the
tree’s width constraints. Defaults to True.

dtvoShowButtons
Set to True to display the expand and collapse buttons in the tree. Defaults to
True.

66 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Events

dtvoShowLines
Set to True to display the connecting lines in the tree. Defaults to True.

dtvoShowRoot
To show lines connecting top-level nodes to a single root, set the tree’s
dtvoShowRoot and dtvoShowLines properties to True.

dtvoShowHorzScrollBar
Set this property to False to disable the horizontal scrollbar from appearing in
the tree.

dtvoShowVertScrollBar
Not implemented. This property currently has no effect. It is reserved for
possible future use.

dtvoHotTracking
Specifies whether list items are highlighted when the mouse passes over them.
Set dtvoHotTracking to True to provide visual feedback about which item is
under the mouse. Set dtvoHotTracking to False, to provide no visual feedback
about which item is under the mouse. To selectively control which nodes are hot-
tracked see the TfcDBTreeView how-to topics at the end of this component’s
reference.

StateImages
Determines which image list to use for state images. Use StateImages to provide a set
of bitmaps that reflect the state of tree view nodes. The state image appears as an
additional image to the left of the item's icon.

Data Type: TCustomImageList

Added Events

OnCalcNodeAttributes
This event allows you to change the node and painting canvas attributes before the
TreeView paints the node. Use this event to change the font, background color, the
node’s text, and other node attributes.

TreeView: TfcDBCustomTreeView TreeView associated with the node to be
painted. If you wish to access the painting
canvas to change the painting attributes of the
node, refer to the TreeView's Canvas property.

Node: TfcDBTreeNode Node that is about to be painted

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Events 67

Example: The following code causes nodes with field Country='US' to paint with a
blue font. The code also displays the first image index (from the imagelist pointed to
by StateImages) for ‘US’, and the 2nd image index otherwise.
procedure Tform1.fcDBTreeView1CalcNodeAttributes(
 TreeView: TfcDBCustomTreeView;
 Node: TfcDBTreeNode);
begin
 if (Node.DataSet = CustomerTable) and
 (CustomerTable.FieldByName('Country').asString = 'US'
then
 begin
 TreeView.Canvas.Font.Color:= clBlue;
 Node.StateIndex:= 0;
 end
 else Node.StateIndex:= 1
end;

OnCalcSectionAttributes
This event allows you to change a column’s painting canvas attributes before the
TreeView paints the node’s column. This event is only applicable if you have
assigned the Header property. Use this event to change the column’s font,
background color, and text display.

TreeView: TfcDBCustomTreeView TreeView associated with the column to be
painted. If you wish to access the painting
canvas to change the painting attributes of the
column, refer to the TreeView's Canvas
property.

Node: TfcDBTreeNode Node that is about to be painted

Section: TfcTreeHeaderSection Header section associated with the column

var DisplayText: string Text to be painted in the column

OnChange
This event allows you to perform some custom action after the active node is changed
in the tree. For instance, you may wish to update a label in your form that displays all
the text of the active node’s parents. The active node can change by the user scrolling
the tree, or by navigating the datasources with some other control.

TreeView: TfcDBCustomTreeView TreeView associated with the event

Node: TfcDBTreeNode Node that is selected

Example: The following code updates a label (TreeStateLabel), when the active node
changes.
procedure TDMTreeViewForm.fcDBTreeView1Change(
 TreeView: TfcDBCustomTreeView;

68 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Events

 Node: TfcDBTreeNode);
var s: string;
 tempNode: TfcDBTreeNode;
begin
 { Compute label to indicate tree state }
 s:= '';
 tempNode:= node;
 repeat
 s:= tempNode.Text + #13 + s;
 tempNode:= tempNode.parent;
 until tempNode=nil;
 TreeStateLabel.caption:= s;
end;

OnDblClick
See OnMouseDown event.

OnDrawSection
This event allows you to change the default text painting of the node. You will rarely
need to use this event, as the OnCalcNodeAttributes is the preferred event to use to
change a node’s font, text, background, and other attributes. This event is only
applicable if you have assigned the Header property. Use this event if you wish to
override the actual painting of one or all of the columns of the node being drawn.

The parameters for this event are as follows:

TreeView: TfcDBCustomTreeView TreeView associated with the node. If you wish
to access the painting canvas, refer to the
TreeView's Canvas property.

Node: TfcDBTreeNode Node that is about to be painted.

Section: TfcTreeHeaderSection Header section associated with the column to be
painted.

ARect: TRect Default rectangle where the text is to be
painted.

S: String Text to be painted in the column.

DefaultDrawing: boolean Specifies whether the control should paint the
item.

OnDrawText
This event allows you to change the default text painting of the node. You will rarely
need to use this event, as the OnCalcNodeAttributes is the preferred event to use to
change a node’s font, text, background, and other attributes. You will only need this
event if you wish to override the actual painting of the node’s text.

The parameters for this event are as follows:

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Events 69

TreeView: TfcDBCustomTreeView TreeView associated with the node. If you wish
to access the painting canvas, refer to the
TreeView's Canvas property.

Node: TfcDBTreeNode Node that is about to be painted

ARect: TRect Default rectangle where the text is to be
painted.

DefaultDrawing: boolean Specifies whether the control should paint the
item.

Example: The following example underlines the character following ampersands in
the node’s text by using the TCanvas DrawText method. Note that the code below
does NOT make the node accessible through an accelerator key. If you desire this
behavior you would need to write the code to trap the keys using events such as the
OnKeyDown event.

 Procedure TForm1.fcDBTreeView1DrawText(
 TreeView: TfcDBCustomTreeView; Node: TfcDBTreeNode;
 ARect: TRect; var DefaultDrawing: boolean);
 begin
 { Underlines characters following ampersand }
 TreeView.Canvas.DrawText(Node.Text, ARect, 0);
 if Node.selected then begin { Draw focus rect }
 InflateRect(ARect, 1, 1);
 ARect.Left:= ARect.Left - 1;
 TreeView.Canvas.DrawFocusRect(ARect);
 end;
 DefaultDrawing := False;
 end;

OnMouseDown, OnMouseUp, OnDblClick
Use this event to perform some custom action when the mouse is pressed, released, or
double-clicked over the TreeView. The parameters for this event are as follows:

TreeView: TfcDBCustomTreeView TreeView associated with the event

Node: TfcDBTreeNode Node that the mouse is over at the time of the
event.

Button: TMouseButton Distinguishes which mouse button generated
the mouse event. Can be mbLeft, mbRight, or
mbMiddle.

Shift: TShiftState Use the Shift parameter to respond to the state
of the shift keys and mouse buttons. Shift keys
are the Shift, Ctrl, and Alt keys or shift key-
mouse button combinations.

70 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Methods

X, Y: Integer X and Y are pixel coordinates of the new
location of the mouse pointer in the client area
of the TreeView.

OnMouseMove
Use this event to perform some custom action when the mouse moves over a node.

The parameters for this event are as follows:

TreeView: TfcDBCustomTreeView TreeView associated with the event

Node: TfcDBTreeNode Node that the mouse is over

Shift: TShiftState Use the Shift parameter to respond to the state
of the shift keys and mouse buttons. Shift keys
are the Shift, Ctrl, and Alt keys or shift key-
mouse button combinations.

X, Y: Integer X and Y are pixel coordinates of the new
location of the mouse pointer in the client area
of the TreeView.

OnUserCollapse
Use this event to perform some custom action after the user has collapsed a node by
pressing on the collapse button, using the left-arrow key, or by pressing the icon
under the vertical scrollbar to collapse a node.

The parameters for this event are as follows:

TreeView: TfcDBCustomTreeView TreeView associated with the event

Node: TfcDBTreeNode Node that has collapsed

OnUserExpand
Use this event to perform some custom action after the user has expanded a node by
pressing on the expand button, using the right-arrow key, or by pressing the icon
under the vertical scrollbar to expand a node.

The parameters for this event are as follows:

TreeView: TfcDBCustomTreeView TreeView associated with the event

Node: TfcDBTreeNode Node that has been expanded

Added Methods

Collapse
Call this method to collapse a node so that its children are hidden.
Procedure Collapse(Node: TfcDBTreeNode); virtual;

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - Added Methods 71

Expand
Call this method to expand a node so that its children are displayed.
Procedure Expand(Node: TfcDBTreeNode); virtual;

GetHitTestInfoAt
GetHitTestInfoAt returns information about the location of a point relative to the
client area of the tree view control.
function GetHitTestInfoAt(X, Y: Integer): TfcTreeHitTests;

Call GetHitTestInfoAt to determine what portion of the tree view, if any, sits under
the point specified by the X and Y parameters. For example, use GetHitTestInfoAt to
provide feedback about how to expand or collapse nodes when the mouse is over the
relevant portions of the tree view.
GetHitTestInfoAt returns a TfcTreeHitTests type. The possible return values are:

Value Location of (X,Y)

fchtOnButton On the button (expand/collapse) associated with a node

fchtdOnActiveNode On the active tree node

fchtdOnImageIcon On the image icon associated with a node

fchtdOnText On the label (text) associated with a node

fchtdOnStateIcon On the state icon for a node

GetNodeAt
GetNodeAt returns the node that is found at the specified position.
Function GetNodeAt(X,Y: integer): TfcDBTreeNode;

Call GetNodeAt to access the node at the position specified by the X and Y
parameters. X and Y specify the position in pixels relative to the top left corner of the
tree view. If there is no node at the location, GetNodeAt returns nil.

InvalidateClient
Call this method to invalidate the tree’s client-area. The buttons on the bottom-right
are not repainted. Call the inherited Invalidate method to have the entire tree repaint.
Procedure InvalidateClient; virtual;

InvalidateNode
Call this method to invalidate the current node in the tree.
Procedure InvalidateNode(Node: TfcDBTreeNode);

InvalidateRow
Call this method to invalidate a row in the tree. Row is the offset from the top of the
tree, where the top node has row=0.

72 Chapter 4, 1stClass Component Reference, TfcDBTreeView - Added Methods

Procedure InvalidateRow(Row: integer);

IsSelectedRecord
When MultiSelectAttributes | Enabled is True, use this method to test if the active
node has been multi-selected.
Function IsSelectedRecord: boolean;

MakeActiveDataSet
Call this method to have a node associated with a specific TDataSet be made the
active node. Set Collapse to True to force the children to be hidden after changing the
active node. If Collapse is False, the children are still displayed if the new active
node is the parent of the displayed child nodes.
Procedure MakeActiveDataSet(DataSet: TDataSet;
 Collapse: boolean);

MoveTo
Use this method within the context of one of the tree events to cause the node to
become the active node.
Procedure MoveTo(Node: TfcDBTreeNode);

SelectRecord
When MultiSelectAttributes | Enabled is True, use this method to select the active
node in a tree If both MultiSelectAttributes | Enabled and MultiSelectAttributes |
MultiSelectCheckbox are enabled, then the checkbox becomes checked.
Procedure SelectRecord; virtual;

SortMultiSelectList
Call this method to sort the multi-selected nodes. The nodes are sorted based on the
return value of the dataset’s CompareBookmark function. The result of calling this
method will leave the root nodes at the top of the list, followed by all the selected
nodes at level 1, and so on.

UnselectAll
Call this method to unselect all previously multi-selected records. See also the
MultiSelectAttributes property.
procedure UnselectAll; virtual;

UnselectRecord
When MultiSelectAttributes | Enabled is True, use this method to unselect the active
node in a tree
procedure UnselectRecord; virtual;

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - How To 73

How To

How to use the TfcDBTreeView to display a self-referencing tree from a single
table.
Since the TfcDBTreeView provides a generic way to display one or more datasources, you
can use it to display a self-referencing tree. The steps to accomplish this are described
below and an implementation of this can be found in the demo form
\demos\dbtreeview\DBSelfTree.pas.

1. Retrieving the root nodes: Use a dataset component (such as a TQuery), to retrieve
all the root nodes. In this example the data comes from the table FirstClass:fcmsg.db.
Then assign its SQL property as follows.
Select msgid,rootid,parentid,

fcmsg."date",subject,fcmsg."name" from fcmsg
where fcmsg."parentid" is null

Now set the dataset’s Active property to True, and its name property to
RootNodesQuery. After this drop in a TDataSource component and give it the name
RootNodesDataSource, and then set its DataSet property to RootNodesQuery.

2. Retrieving the children of a node: Repeat the steps above with another TQuery
component, and this time set its SQL property to the following:
Select * from fcmsg
where fcmsg."parentid"=:msgid

Now set the dataset’s Active property to True, and its name property to
ChildNodesQuery. After this drop in a TDataSource component, and name it
ChildNodesDataSource, and then set its DataSet property to ChildNodesQuery.

3. Viewing and editing the active node: Now drop a 3rd dataset component (such as a
TTable or TQuery), and assign its name property to ViewTable. This dataset
component will be used to display and edit the actual node in the tree. If using a
TTable component, you can set its tablename property to fcmsg.db. After this drop
another TDataSource component and set its dataset property to ViewTable. Use this
datasource to view and edit any data for the currently selected node in the
TfcDBTreeView. To keep the ViewTable in sync with the currently selected node of
the TfcDBTreeView, you will need to put the following code in the tree’s OnChange
event.
 ViewTable.locate('MsgID',

node.dataset.fieldbyname('MsgID').asstring, []);

4. Hooking up the Tree to the datasources: Set the DataSources property of the
TfcDBTreeView to RootNodesDataSource;ChildNodesDataSource

To allow the dbtreeview to recursively expand, you will need to create additional
datasources after the user expands a node. This can be handled with the following

74 Chapter 4, 1stClass Component Reference, TfcDBTreeView - How To

specific code in the OnUserExpand event. LastDS is a global Tdatasource that should
be defined in your interface section.
procedure TSelfDBForm.fcDBTreeView1UserExpand(

TreeView: TfcDBCustomTreeView;
Node: TfcDBTreeNode);

var childquery: TQuery;
 childdatasource: TDataSource;
begin
 if (node.level+1<fcdbtreeview1.displayfields.count) then exit;

 { Dynamically create new detail parameterized query }
 childdatasource:= TDatasource.create(self);
 childdatasource.name:= 'ChildDataSource' + inttostr(node.level+1);
 childquery:= TQuery.create(self);
 childdatasource.dataset:= childquery;
 with childquery do begin
 childquery.sql.assign(ChildNodesQuery.sql);
 childquery.databasename:= ChildNodesQuery.databasename;
 if lastds=nil then childquery.datasource:= ChildNodesDataSource
 else childquery.datasource:= lastDS;
 childquery.active:=true;
 end;
 with (TreeView as TfcDBTreeView) do begin
 DataSources:= DataSources + ';'+ ChildDatasource.name;
 displayfields.add(displayfields[displayfields.count-1]);
 lastDS:= Childdatasource;
 end
end;

5. Setting up the columns: To display the field information as columns, drop a
TfcTreeHeader control and click on its Sections property to configure the columns.
Then set the Header property of the TfcDBTreeView control to this header control.

6. Hiding an expand button when it has no children: To disable the expand button if
there are no child nodes for a given node, you will need to drop another dataset
component that you can lookup to determine if there are any children. For instance,
drop a TTable component and set its tablename property to fcmsg.db and its
IndexName property to ParentID. Then attach the following code in the
OnCalcNodeAttributes of the TfcDBTreeView.
 node.haschildren:= IndexLookupTable.Locate('ParentID',

node.dataset.fieldbyname('msgid').asstring, []);

How to control which specific nodes are displayed as a hot-track
You can enable automatic hot-tracking of tree nodes by setting the property Options |
dtvoHotTracking to True. However this will hot-track each and every node, which may
not be appropriate for your tree. To selectively hot-track nodes, use the
OnCalcNodeAttributes event, and set the Node.Hot property to False for nodes that
should not be hot-tracked. The following code attached to the OnCalcNodeAttributes
event will hot-track the root nodes in the tree, but not other nodes.

if Node.Hot and (Node.Level>0) then Node.Hot:= False;

Chapter 4 - 1stClass Component Reference, TfcDBTreeView - How To 75

How to disable the expand icon (+) for specific nodes with no children
The tree automatically displays the expand icon for all nodes except the last datasource
(specified by DataSourceLast or the last datasource specified in the DataSources
property). However in some cases you may wish to prevent the display of the expand
button for other nodes as well. This may be the case when those other nodes have no
children. This can be accomplished through use of Delphi/Builder’s lookupfields
mechanism in combination with using the OnCalcNodeAttributes event.

For example, suppose your tree is displaying records from a customer table as the root
nodes, and the orders for a customer as the child nodes. You wish to only display the
expand icon for the customer nodes that have orders. This can be accomplished by the
following steps.

1. Drop a new TTable/TQuery component into your form and associate it with the
Orders table. Do not use the existing TTable/Query that the tree is displaying as
lookup fields require their own TDataSet.

2. Add a new lookup field (name it ‘LookupOrders’ for step 3 below) to your customers
table, and have it lookup the dataset in step 1. See your Delphi/Builder
documentation for the steps on creating a lookup field.

3. Use the OnCalcNodeAttributes event to set the Node.HasChildren property if the
lookupfield is not null. A null lookupfield indicates that the node has no children.

 {Use lookupfield to decide if expand icon(+) should be
visible}

 if Node.DataSet = CustomerTable then
 Node.HasChildren:=
 Not Node.dataset.fieldbyname('LookupOrders').isNull;

How to change the color of a node based on its field information
See example documented under the OnCalcNodeAttributes event.

How to iterate through the list of selected records
The following code iterates through the list of selected records, and displays the
‘Company’ field from the related dataset.
var i: integer;
begin

fcdBTreeView1.SortMultiSelectList;
for i:= 0 to fcDBTreeView1.MultiSelectListCount-1 do begin
 with fcDBTreeView1.MultiSelectList[I] do begin
 DataSet.GotoBookmark(Bookmark);
 ShowMessage(DataSet.FieldByName('Company').asString);
 end
end

end

Note: You may also wish to call the DisableControls method of the dataset before
iterating through the MultiSelectList. This would prevent controls tied to this dataset

76 Chapter 4, 1stClass Component Reference, TfcDBTreeView - How To

from updating during the iteration. If you call DisableControls, make sure you call
EnableControls to re-enable the dataset.

How to use a TPopupMenu to associate one or more actions action on the right-
clicked node.
You can set the PopupMenu property of the tree to associate a popup-menu when the tree
is right-clicked. To perform on action on the selected node from within your PopupMenu
item’s OnClick code, you can refer to the tree’s ActiveNode property. For instance you
could use the following code in your TMenuItem OnClick event to insert a record before
the right-clicked node.

fcDBTreeView1.ActiveNode.Dataset.Insert;

How to prevent the text from being highlighted for multi-selected nodes.
When using MultiSelectAttributes | MultiSelectCheckbox, the end-user can tell which
nodes are selected by observing the checkbox. Thus there is no absolute need to also
highlight the text. If you wish to display the text normally (non-highlighted) for multi-
selected nodes but not the active node, then use the following code in your
OnCalcNodeAttributes event.

if node.multiselected and (not node.selected) then
begin
 treeview.Canvas.Brush.Color:= clNone;
 treeview.Canvas.Font.Color:= clBlack;
end

Chapter 4 - 1stClass Component Reference, TfcEditFrame (Class) - Components that support
custom framing and transparency 77

TfcEditFrame (Class)

 TfcEditFrame is a supporting class for many 1stClass components. 1stClass
3000 gives you the means to create elegant forms that look just like the real hardcopy
form they are based on. Each control's transparent and custom framing effects can even
display underline controls that are transparent. However the custom framing goes far
beyond simple underline controls as you can display the borders in many different frame
styles. You can also set different frame styles for when the control has focus and when it
doesn’t. You can additionally disable any edge from being displayed. See the demo in the
\1stclass3000\demos\framing directory.

Form displayed as a check, using 1stClass’s transparent edit controls, custom
framing, and custom button effects.

Components that support custom framing and transparency
The following 1stClass components support custom framing, transparency, and button
effects (where applicable): TfcTreeCombo, TfcFontCombo, TfcColorCombo, TfcCalcEdit,
TfcGroupBox, and TfcPanel.

Key properties and events for custom framing support
The following properties are in 1stClass 3000 to support the custom framing,
transparency, and special button effects. Frame is a property available to all the 1stClass
edit controls and some other controls. The following details each sub-property of Frame.

78 Chapter 4, 1stClass Component Reference, TfcEditFrame (Class) - Properties

Properties

Enabled
Set to True to enable the custom frame or transparency effects. If this property is
false, then the other properties below will not function.

AutoSizeHeightAdjust
When an edit control’s AutoSize is set to True, 1stClass computes what it deems the
most appropriate height for an edit control. You can set this property to adjust the
resulting height of the control. For instance a value of 1 will cause the control to be 1
pixel larger than the value that 1stClass computes.

FocusBorders
Selects which borders are displayed when the control has focus.

NonFocusBorders
Selects which borders are displayed when the control does not have focus.

FocusStyle
Select the frame style when the control has focus.

NonFocusStyle
Selects the frame style when the control does not have focus

NonFocusTextOffsetX, NonFocusTextOffsetY
Use these properties to customize the painting of the text when the control does not
have focus. You should only override these properties if you do not like the default
placement of the painted text

NonFocusColor
Set this property to change the background color of the control when it does not have
focus. Use the Color property if you wish to change the color of the control when it
has the focus. If this property is set to clNone, then the color property is used to paint
the background when it does not have the focus.

NonFocusFontColor
Set this property to change the text color of the control when it does not have focus.
You may wish to set this property so that the text of the control stands out when it
does not have focus. This property is particularly useful when you have enabled
transparency, and the control’s font color is not legible with the background. By
assigning the font to a color that is contrasted well with the background will enable
your user’s to clearly see the text when it does not have the focus.

Chapter 4 - 1stClass Component Reference, TfcEditFrame (Class) - Properties 79

NonFocusTransparentFontColor
This property is maintained for backwards compatibility. For newer applications,
instead use the NonFocusFontColor property.

Set this property to change the text color of the control when it does not have focus.
You may wish to set this property so that the text of the control stands out when it
does not have focus. If you instead set the control’s font.color property, the text color
will be the same whether or not the control has focus. This could cause your text to
disappear when your control receives focus as the control paints the background
instead of being transparent. Thus you should set this property instead when using
transparent controls.

MouseEnterSameAsFocus
Now in 1stClass 3000, you can set this property to true to enable the control’s borders
to paint as if they had focus when the mouse is moved over the control. This gives a
pleasing visual effect similar to Microsoft Office controls. Set FocusStyle to
efsFrameSunken with all borders and set NonFocusStyle to efsFrameBox with no
Borders to achieve this effect. For optimal display may also wish to set the
NonFocusTextOffsetX to 2 and the NonFocusTextOffsetY to 1.

Transparent
This property causes the control to display itself transparently when it does not have
the focus. The net effect is that you will see the background painted behind the
control. Set this property to True if you wish to see the background when the control
does not have the focus.

Restrictions: The background must be painted by a non-windows control (not derived
from TWinControl), such as a Delphi TImage or the TfcImager (from Woll2Woll’s
1stClass product). There may be some painting side effects when using a
TWinControl to paint the background. You should only set this to True if you have a
background painted by a TControl, not a TWinControl.

80 Chapter 4, 1stClass Component Reference, TfcFontCombo - Ancestor

TfcFontCombo

 The TfcFontCombo provides a way for the user to select a font from a drop-down
list. In addition it saves and displays the most recently selected fonts at the top of the
drop-down list.

Set the MaxMRU to a value greater than 0 to have the control save and display the most
recently selected fonts. These fonts are displayed at the top of the drop-down list.

Screen shot of MRU

Set ShowHintFont to True to give the user a sample preview of the font that the mouse
cursor is over. If you also set the ImmediateHints font property to True, then the hint
window is immediately displayed (as opposed to a delay) as soon as the mouse moves over
a font.

Internally the TfcFontCombo uses a TfcTreeView to display its drop-down list items. If
you wish to change the display options of the drop-down tree, the set the TreeOptions
property. However since the drop-down list for fonts is non-hierarchical not all options
will apply.

Ancestor
TCustomEdit
 TfcCustomCombo
 TfcCustomTreeCombo
 TfcCustomFontCombo
 TfcFontCombo

Chapter 4 - 1stClass Component Reference, TfcFontCombo - Added Properties 81

Added Properties

AutoSelect, AutoSize, BorderStyle, CharCase
These properties are equivalent to the properties of the same name found in TEdit.
See the Delphi / C++ Builder docs under TEdit for more information on these
properties.

AllowClearKey
When the style is set to csDropDownList, the user is not able to clear their selection.
The AllowClearKey property when set to True, gives the user a convenient way to
clear the combos current selection simply by entering either the or
<BACKSPACE> character. The default value is False.

Data Type: boolean

Controller
See InfoPower TwwController property

DropDownCount
The DropDownCount property determines how many entries will appear in the
dropdown control.

Data Type: Integer

DropDownWidth
The DropDownWidth property determines how wide the dropdown TreeView control
will be. The default value is 0, which will automatically size the box based on the
width of the items in the drop-down list.

Data Type: Integer

Frame
See TfcEditFrame for more information on this property.

Data Type: TfcEditFrame

ImmediateHints
Use this property when the ShowFontHint property is True. If ImmediateHints is
True, the font preview is displayed immediately when the mouse moves over a new
font. If ImmediateHints is False, then the font hint is not displayed until after the
standard hint delay time.

82 Chapter 4, 1stClass Component Reference, TfcFontCombo - Added Properties

FontCombo with FontHint Displayed

Data Type: boolean

MaxMRU
This property specifies the maximum number of items that will be added to the most
recently used section of the drop down tree view. If this property is -1then MRU
functionality is disabled.

Data Type: integer

PreLoad
When this property is set, the fonts are loaded into the combo upon creation.
However, when this property is false, the fonts are loaded when you drop down the
list, or when you type in a character when ShowMatchText is true.

Data Type: boolean

RecentFonts
A list of fonts that appear at the top of the drop-down list. This property is
automatically managed if the MaxMRU property contains a value other than –1.

Data Type: TStringList

SelectedFont (Runtime and ReadOnly)
Reference this property to return the name of the currently selected font

Data Type: String

ShowFontHint
Set to True to give the user a sample preview of the font that the mouse cursor is over.
After the drop-down list is displayed, the user can move the mouse over any font in
the drop-down list and the control will display a hint window containing a sample of
the font. See also the ImmediateHints property.

Data Type: boolean

Chapter 4 - 1stClass Component Reference, TfcFontCombo - Added Properties 83

ShowMatchText
When this property is set to True, the FontCombo will perform ‘Quicken’ style
incremental searching. As the user enters text, the control will simultaneously search
and display the matching font in the control. The default value is True.

Data Type: boolean

Sorted
Setting this property to True will sort the list alphabetically. Once the drop-down
items are sorted, the original order is lost. That is, setting the Sorted property back to
False will not restore the original order of items. The default value is True.

Data Type: boolean

Style
This property determines the style of the FontCombo. The csDropDown Style creates
a drop-down list with an edit box in which the user can enter text. The
csDropDownList Style creates a drop-down list with no attached edit box, so the user
can’t edit an item or type in a new item.

Data Type: TfcComboStyle

Valid Values: fcCombo.csDropDown, fcCombo.csDropDownList

TreeOptions
If you wish to change the display options of the drop-down tree, the set the
TreeOptions property. However since the drop-down tree for fonts is non-hierarchical
not all display options will apply. See the Options property of the TfcTreeView
control.

Data Type: TfcTreeViewOptions

Valid Values: tvoExpandOnDblClk, tvoExpandButtons3D, tvoFlatCheckBoxes,
tvoHideSelection, tvoRowSelect, tvoShowButtons, tvoShowLines, tvoShowRoot,
tvoHotTrack, tvoAutoURL, tvoToolTips, tvoEditText, or tvo3StateCheckbox

TreeView (Runtime only)
Use this runtime only property to access the dropdown treeview control.

Data Type: TfcTreeView

84 Chapter 4, 1stClass Component Reference, TfcFontCombo - Added Events

Added Events

OnAddFont
Occurs immediately before adding a font to the font combo. Accept is initially true
setting it to false will prevent the font from being added to the font combo. The
parameters for this event are as follows:

FontCombo: TfcFontCombo The TfcFontCombo associated with the event

FontName: string The name of the font that the TfcFontCombo is
adding.

FontType: TfcComboFontType The type of font being added. Can be either
ftFontPrinter, ftFontTrueType, or ftFontOther.

EnumLogFont: TEnumLogFont Consult your Windows API documentation for
information on the structure of EnumLogFont

NewTextMetric: TNewTextMetric Consult your Windows API documentation for the
structure of NewTextMetric

var Accept: boolean Set to False to not add the font into the list.

OnGenerateFontHint
Occurs immediately before displaying a hint for a particular font. Customization on
the hint text and font can occur here. Only occurs when the ShowFontHint property
is true.

FontCombo: TfcFontCombo The TfcFontCombo associated with the event

FontName: string The name of the font that a hint is about to be
displayed for.

Font: TFont TFont correlating with the font associated with the
hint

var Hint: string The text to be displayed in the hint window. Set this to
customize the text of the hint.

OnSelectionChange
See the TfcTreeCombo OnSelectionChange event

Added Methods

CloseUp, DropDown
See the corresponding methods declared in the TfcTreeCombo component

Chapter 4 - 1stClass Component Reference, TfcFontCombo - Added Methods 85

Reload
Reload the list of fonts from the system

86 Chapter 4, 1stClass Component Reference, TfcGroupBox - Ancestor

TfcGroupBox
The TfcGroupBox component is similar to the native TGroupBox component, with
additional options for run-time transparency and custom framing.

TfcGroupBox controls

Ancestor
TCustomGroupBox
 TfcCustomGroupBox
 TfcGroupBox

Added Properties

BorderAroundLabel
When this property is True, then the framing will go around the groupbox text
creating sort of a tab look. When this is false, then a normal groupbox look where the
text overlaps the upper border applies.

Data Type: Boolean

CaptionIndent
This property determines the indent of the caption relative to the side of the groupbox
control. The minimum value is 3.

Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcGroupBox - Tips 87

FullBorder
When BorderAroundLabel is True, then this property will make the caption of the
groupbox taller otherwise the caption will be displayed half in the groupbox and half
out of it like a standard groupbox control. When BorderAroundLabel is False, then
FullBorder will cause the caption to be displayed above the groupbox transparently.

Data Type: Boolean

Frame
Currently only the NonFocusFontColor and NonFocusColor properties are supported
when Frame.Enabled is set to True. The other Frame properties are left in for
possible future enhancements.

Set Transparent to False if you wish to have the groupboxes dynamically change
colors based on the controls focus and use the Color, Frame.NonFocusColor,
Font.Color and Frame.NonFocusFontColor property settings accordingly.

See TfcEditFrame for more information on this property.

Data Type: TfcEditFrame

Transparent
Controls whether or not to display the TfcPanel transparently.

Data Type: Boolean

Tips

• If you wish all of the controls in the TfcGroupBox to have their font change
when the group box’s font changes, then you may wish to use the OnEnter
and OnExit events to set the Groupbox Font’s Color property and set all of
the child’s parentfont settings to True. Otherwise if you wish the child
controls to always have the same font color property, then you can set them
individually with their parentfont property set to False. Then you can just set
the Frame.NonFocusFontColor and Color properties of the GroupBox to
handle the coloring of the GroupBox.

NOTE: Focus Colors and NonFocusColors don’t apply unless the
Transparent property is set to False.

88 Chapter 4, 1stClass Component Reference, TfcImageBtn - Tips

TfcImageBtn

 The TfcImageBtn, in addition to providing the functionality found in TButton,
TBitBtn, and TSpeedButton, enhances the native buttons in many important ways. Most
significantly, the button takes its appearance and shape from an image. Therefore, the
number of different shapes it can have are virtually limitless.

TfcImageBtn controls

Some of its capabilities include:

• A separate Up and Down image is possible with different shapes for each.
Among its other uses, this allows the button to function as a switch control.

• The Highlight shade style alters your image to make even a plain flat image
appear 3D both in its pressed and non-pressed state.

• The DitherStyle property allows the dithering that occurs when it is down
and part of a group of buttons to display in a number of ways—from
blending the image with a specified color, to the standard windows dithering
method.

• Regardless of the image you have used to define the button, its color can still
be manipulated using the color property.

1stClass provides the following design-time aids when configuring your image button.

• Double-Clicking on the control at design-time will cause either one of two
things to occur. If the Image property is empty, then the Picture Selection
Dialog Box will appear. Otherwise, if an image is already defined, the
OnClick handler will be, if necessary, created, and then shown.

• When you right-click the button at design time, you can access the following
actions from the pop-up menu.

Set Shade Colors
Select this item to modify the ShadeColors property to be appropriate for the
pixel you right-clicked on to bring up the popup menu. For example, if your
image contains an area of yellow pixels, right-click on one of those pixels and
then choose this item.

Chapter 4 - 1stClass Component Reference, TfcImageBtn - Ancestor 89

Size To Default
Sets the size of the button to match the size of the bitmap stored in the Image
property.

Ancestor
TWinControl
 TfcCustomBitBtn
 TfcCustomImageBtn
 TfcImageBtn

Added Properties

Action, AllowAllUp, Anchors, Cancel, Constraints, Default, Down, Glyph,
GroupIndex, Kind, Layout, Margin, ModalResult, Style, and Spacing

These properties are equivalent to the properties of the same name found in
TSpeedButton. See the Delphi / C++ Builder docs under TSpeedButton for more
information on these properties.

Color
Setting this property to a value other than clNone will result in the general color of
the image to reflect the new value of Color. This feature works best with grayscale
images.

Data Type: TColor

DitherColor
The value of this property determines what color the button blends with when it is
down and part of a group. (i.e., the GroupIndex property is set to a value greater then
0) This property defaults to clWhite.

Data Type: TColor

DitherStyle
This property determines how dithering is applied when the button is part of a group.
(i.e., the GroupIndex property is set to a value greater then 0)

Data Type: TfcDitherStyle
Valid Values: dsDither, dsBlendDither, dsFill

dsDither
This provides for the standard dithering seen with other controls like the
TSpeedButton. The button's color will dither with the value of the DitherColor

90 Chapter 4, 1stClass Component Reference, TfcImageBtn - Added Properties

property. Left at its defaults, the dithered look will be an alternating array of
clSilver and clWhite pixels.

dsBlendDither
This will cause the button's Image to be dithered with the color specified by the
DitherColor property. Every other pixel of the image will be the DitherColor.

dsFill
This will simply fill the region of the button with the DitherColor.

ExtImage
Provides for the delegation of the actual image that the button uses to a separate
component. Use this in place of the Image property. This can be useful for a number
of reasons including: lowering DFM size, lowering resource consumption, ease of
use, and much more. ExtImage corresponds to the Image property and will supercede
it when set.

Data Type: TComponent
Valid Values: TfcImager, TfcImageBtn

ExtImageDown
This property is functionally equivalent to the ExtImage in all respects except that it
applies to the ImageDown property instead of the Image property.

Data Type: TComponent
Valid Values: TfcImager, TfcImageBtn

Image
This property controls both the shape of the button and the background image of the
button. By default, the upper-left hand corner pixel of the image is taken to be the
transparent color. Any pixel of this color will not be part of the button and will
therefore be wholly transparent.

Data Type: TfcBitmap

ImageDown
Set this property if you want the down state of the image to have a different
appearance than the up state. The shape of the down image does not necessarily have
to be the same as that of Image.

Data Type: TfcBitmap

NumGlyphs
This property is similar to the property of the same name for TSpeedButton. It
determines how many images the Glyph property can store up to a maximum of four.
Images within the Glyph property are arranged horizontally. (i.e., A glyph with four

Chapter 4 - 1stClass Component Reference, TfcImageBtn - Added Properties 91

images has a dimension of Height x 4 * Width) The left-most image is the standard
glyph that is displayed when the mouse is in an idle state. The next glyph to the right
is displayed when the button is disabled. The third glyph is displayed when the
button is down/clicked. The last glyph is displayed when the mouse is over the
control (hot-tracking).

Data Type: TNumGlyphs
Valid Values: 1..4

Offsets
This set of properties allows you to manipulate how various parts of the button are
painted.

GlyphX, GlyphY
Set these properties to displace the glyph from its default position. Positive and
negative values are allowed. Positive GlyphX displaces the glyph towards the
left, a negative value for GlyphX displaces the glyph towards the right. Positive
and negative values for GlyphY work the same, but Up and Down respectively.

Data Type: Integer

TextX, TextY
Similar in functionality to GlyphX and GlyphY. However, these properties affect
the displacement of the caption of the button.

Data Type: Integer

TextDownX, TextDownY
Similar in functionality to TextX and TextY, these properties affect the
displacement of the caption when the button is pressed.

Data Type: Integer

Options
This property is a set of boolean flags that control various aspects of the button.

Data Type: TfcButtonOptions
Valid Values: boFocusable, boToggleOnUp, boFocusRect, boAutoBold

boFocusable
When set, the button is a valid control for receiving focus. However, regardless
of the value of this property, arrow keys will always be able to select the button.

boToggleOnUp
When set, the button will not toggle its Up/Down state until the user has released
the mouse button. This property is useful when the button is part of a group. (i.e.,
the GroupIndex property is set to a value greater than 0) It is particularly useful

92 Chapter 4, 1stClass Component Reference, TfcImageBtn - Added Properties

when you have a button with different up and down images and you want to more
closely replicate the behavior of a "switch" style button.

boFocusRect
When set, the button will have a standard focus rectangle (A dotted line
rectangle) around the button caption. This property is only used when the
boFocusable property is True.

boAutoBold
When set, the button caption's font will go to bold when pressed down. This
property is only used when the button is part of a group. (i.e., the GroupIndex
property is set to a value greater then 0)

ParentClipping
When True (the default), the button's container (form, panel, etc.) will clip the region
where the button is located. This can occasionally cause the form to appear poorly
until the buttons are finished loading. Therefore, set this property to False to obtain a
better appearance when painting the form/container.

Data Type: boolean

RespectPalette
When the underlying Image and/or ImageDown property contains a bitmap with a
palette (256 Colors or less) then setting this property to True can significantly
improve appearance on systems that display 256 colors or less. However, note that
this can potentially degrade performance.

Data Type: boolean

ShadeColors
This property contains a set of sub-properties that control the colors used to paint the
highlight and shade colors of the button.

BtnHighlight
The color of what is typically the farthest displayed pixel to the upper-left of a
button. Defaults to clBtnHighlight (Which, in turn, defaults to clWhite on most
systems)

Btn3DLight
The color one pixel farther in from the pixels controlled by the BtnHighlight
property.

BtnBlack
The color of what is typically the color the farthest to the lower right of a button.
Defaults to clBlack.

Chapter 4 - 1stClass Component Reference, TfcImageBtn - Added Properties 93

BtnShadow
The color one pixel farther in from the pixels controlled by the BtnBlack
property.

BtnFocus
The color of the outline that appears around a button if it obtains focus and has
the Options | boFocusable property set to True.

Shadow
The fill color that is used when the button's ShadeStyle is fbsNormal or
fbsRaised. When ShadeStyle is set to fbsNormal, the fill color is the color that
appears on the upper-right when the button is pressed. When ShadeStyle is set to
fbsRaised, the fill color is the color that appears on the lower right when the
button is not pressed.

ShadeStyle
This property determines how the button shades the image. Note that this property is
only respected if the ImageDown property is empty.

fbsNormal
When ShadeStyle is set to fbsNormal, the button appears exactly as the image in
the Image property dictates when the button is not pressed. When the button is
pressed, however, the image is offset by two pixels, and the resultant gap is filled
in with the color defined in the ShadeColors.Shadow property.

fbsRaised
When ShadeStyle is set to fbsRaised, the button appears elevated from the form
and its shadow is drawn in the color defined in the ShadeColors.Shadow
property. When the button is depressed, the button appears exactly as the image
in the Image property.

fbsHighlight
Setting ShadeStyle to this value causes 3D lines to be applied to the edges of the
Image. The colors of the 3D lines are determined by the ShadeColors property.

fbsFlat
This setting is similar to fbsHighlight, but the 3D lines are only applied when the
mouse is over the button.

TextOptions
Please see the documentation for TfcText.

94 Chapter 4, 1stClass Component Reference, TfcImageBtn - Added Events

TransparentColor
This property determines what color in Image will be taken to be transparent. If it is
set to clNone (the Default), the upper-left hand pixel will be taken to be the
transparent color. If it is set to clNullColor, the button will not have any transparent
elements and will therefore be a standard rectangle. Any other value for this property
will cause that specific color to be transparent, and therefore not be contained within
the Button's region.

Added Events

OnMouseEnter
Occurs when the mouse cursor passes from outside the control to inside the control.

OnMouseLeave
Occurs when the mouse cursor passes from inside the control to outside the control.

OnSelChange
Occurs when the Down property changes. Although similar to the OnClick event, this
event differs in that it is also fired when the user clicks on a different button assigned
to the same GroupIndex.

Added Methods

SizeToDefault
Call this method when you want to make the size of the button match the size of the
bitmap stored in the Image property.
procedure SizeToDefault; override;

UpdateShadeColors
This method will modify the ShadeColors property to be appropriate for Color.
procedure UpdateShadeColors(Color: TColor); override;

How To

Respond to when the mouse enters and leaves the button
Attach handlers to the OnMouseEnter and OnMouseLeave events. In those events,
you can set the Color properties of the Font, Button, TextOptions, etc. To easily
update ShadeColors after setting the Color property, call the UpdateShadeColors
method.

Chapter 4 - 1stClass Component Reference, TfcImageBtn - How To 95

Have multi-line captions
When editing the Caption property click on the ellipsis button to bring up a standard
stringlist editor.

Make the buttons more resource efficient
When using the Image and ImageDown properties of the button, each button requires
its own bitmap handle, which is a limited Windows resource. Therefore, if any of
your buttons use the same image as another button, all subsequent buttons can simply
use that button's Image and ImageDown by setting their ExtImage and
ExtImageDown properties to that original button. In addition, you can have the
ExtImage and ExtImageDown properties point to a TfcImager and take advantage of
all the image manipulation that that component allows.

Change the positions of the caption and glyph
You can use the Offsets property to change the position of the Caption and Glyph for
both when the button is up and when the button is down.

Make the parent of the button paint at the button's position
To cause the parent to paint in the button's rectangle before painting the button, set
the button's ParentClipping property to False. This can improve how the buttons
look when they are painted, as there will not ever be a period of time where the user
can "see through the form". (The purpose of clipping)

Prevent the button from having a region
It can often be desirable to utilize the TfcImageBtn to display a rectangular button
with a background. In order to accomplish this, you need to tell the button that there
is no transparent color. clNone tells the button to use the pixel on the upper-left hand
corner of the button's image as the transparent color. clNullColor, on the other hand,
tells the button to not even use a transparent color, and will result in a rectangular
button.

How to simulate certain button types
The TfcImageBtn is very versatile and can be used in the following traditional ways:

Use it as a TButton or TBitBtn, which receives focus and is tabbable by setting
Options | boFocusable and Options | boFocusRect to True. For some shaped buttons
the focusrect is not that attractive and you may wish to instead change the color when
the control receives the focus. You can do this by using the OnEnter and OnExit
events to change the Color property of the control.

Use it as a TSpeedButton, which does not receive focus and thus does not steal focus
away from a different control.

96 Chapter 4, 1stClass Component Reference, TfcImageBtn - Tips

Tips

• Use Options | boToggleOnUp when the non-transparent area of the image
specified by Image is different than that of the image specified by
ImageDown. This improves display behavior in the case where the mouse is
held down, and user moves cursor to the non-transparent part of the image.

• When creating a different up and down image, you
may want to make the actual image dimensions the
same but make the position in the image change. See
figure to the left. Notice how the picture on the right
has padding on the left. In essence, offset the images
within the bitmap much like you would if you were
creating an animation.

Chapter 4 - 1stClass Component Reference, TfcImageForm - Ancestor 97

TfcImageForm

 The TfcImageForm allows you to create a non-rectangular shaped form whose
border is defined by the transparent areas of a loaded image, and whose background is
defined by the loaded image. When you drop a TfcImageForm onto a form, the
BorderStyle is changed to bsNone since the image will define the borders of the form.
The bsNone BorderStyle has no visible borderline, is not resizable, and does not have a
caption bar.

By default clicking on the TfcImageForm control at runtime will allow an end user to
move/drag the form to a new position. As this is not always desirable, 1stClass has added
the ability to bind any TControl to be used as a DragControl instead. Any control placed
on top of this drag control that is not using it’s OnClick or OnMouseDown event will pass
the mousedown to the drag control.

Double-clicking the control will bring up the standard picture editor. See the Delphi /C++
Builder docs for information on this dialog.

TfcImageForm control

Ancestor
TfcCustomImage
 TfcCustomImageForm
 TfcImageForm

98 Chapter 4, 1stClass Component Reference, TfcImageForm - Added Properties

Added Properties

AutoSize
When True, this property resizes the form based on the width and height of the loaded
image in the Picture property.

Data Type: boolean

CaptionBarControl
This property is used to set any TControl to be used as a drag control for the form.
Since the TfcImageForm changes the border style to bsNone, there is no caption bar,
which the user can drag. To enable some mechanism for the user to drag the form,
drop a TGraphicControl (such as a Delphi TShape, TImage, or a 1stClass TfcImager)
into your form, and then set the CaptionBarControl property to this
TGraphicControl.

The end-user only needs to click on this control to drag the form. If they click on
anywhere else, the form will not be dragged. Any other control placed on top of the
CaptionBarControl that does not have an assigned OnClick or OnMouseDown event
will pass the mouse events to the CaptionBarControl for dragging.

Data Type: TControl

DragTolerance
This property determines how far the end user must move the mouse before dragging
occurs.

Data Type: Integer

Options
This property is a set of boolean flags that control the behavior or display of the
TfcImageForm control.

ifUseWindowsDrag
When True, the form will use the users windows settings when dragging the
form. If the Display Properties | Plus! | Visual Settings | Show window contents
while dragging checkbox is checked, then the contents of all windows will be
shown while the user is dragging. For large forms, this may be a little slower to
paint, and cause trails to be left behind as you move the window. To see only the
Windows outline when you move a window then that checkbox should be set to
False. If ifUseWindowsDrag is set to False, then only the outline of the form
will be shown while dragging.

Data Type: TfcImageFormOptions
Valid Values: ifUseWindowsDrag

Chapter 4 - 1stClass Component Reference, TfcImageForm - Added Methods 99

Picture
Set Picture to a TPicture object that contains a bitmap graphic to be displayed by the
image control. This property determines the background, borders, and shape of the
form. Setting Picture at design time brings up the Picture Editor, which can be used
to specify the file that contains the image.

Data Type: TPicture

TransparentColor
By default this is set to clNone which means the pixel at the bottom left hand color of
the Picture property will be used as the transparent color. Otherwise, you can use this
property to override which color should be transparent. The transparent areas of the
picture will not be part of the form.

Data Type: TColor

Visible
Visible is True by default. Set this property to False if you wish the Picture to only
define the shape of the form and to not display the image. Normally you will want to
use the bitmap defined by your Picture property, as otherwise the form’s edges will
appear as if they have been cut-off.

However, when setting this to False the best way to drag your form would be to drop
a TImage onto your form and set it to alClient and assign it to the TfcImageForm’s
CaptionBarControl property.

Data Type: boolean

Added Methods

ApplyBitmapRegion
This method computes the new transparent area of a form, by rescanning the bitmap
defined by the Picture property. Call this method if you change the TfcImageForm’s
Picture property during program execution.

You may wish to make the size of your program executable smaller, by storing your
image form’s bitmaps in external .BMP files. To load the image at runtime, you will
need to first call the LoadFromFile method of the Picture property, followed by
calling the ApplyBitmapRegion method. For example…
fcImageform1.Picture.LoadFromFile('mainform.bmp');
fcImageform1.ApplyBitmapRegion;

100 Chapter 4, 1stClass Component Reference, TfcImageForm - How To

How To

How to Create a Picture for the TfcImageForm.
Most of the sample form images found in the images/forms directory were created by a
tool called PhotoImpact by Ulead Systems, Inc. However, any photo editing tool would
be useful for creating these type of images. A few things to be careful of when designing
your own image are:

• For large forms, try to minimize the number of colors used to 16 colors or 256
colors since the image is stored in your .DFM file and the larger your image the
larger your .DFM file and executable will be.

• Be careful when creating forms not to antialias (blur) the edges into your
background transparent color. As then you will have artifacts along the edges of
your form.

• Keep in mind that your form will not have any borders and design that into your
image. As your image is exactly what the Form will look like. Many photoediting
tools will allow you to extrude or buttonize an image which create cool 3D effects
(be careful of antialiasing around the outside of the image).

• When you are done designing the form you can select parts of the form and copy
them to a new file to create buttons or the CaptionBarControl.

• The bottom left pixel is used to determine the color of the form that will not be
accessible. (You can override this later by setting the TransparentColor property.)

How to create your own draggable caption control.
After you have created your ImageForm picture, you can use a subset of this image to
create the CaptionBarControl image. Select the portion of the imageform that you want
to be draggable and copy it to the clipboard. Then create a new file and paste the selected
portion from the clipboard. Now you can extrude, buttonize, or add any other 3D effects
that you want and then load this image into a TfcImager or a TImage and assign that
control to the CaptionBarControl property of the TfcImageForm. For more information
see the CaptionBarControl property.

Note: For precise tweaking of the position of the caption control, it is useful to hold down
the control key while you press the arrow keys.

Tips

• Using a bitmap can increase the size of your .dfm files and executables. So
for large forms we recommend using only 16 to 256 colors instead of High or
True Color.

Chapter 4 - 1stClass Component Reference, TfcImageForm - Tips 101

• After dropping a TfcImageForm onto your form at design time, you can get
access to the form properties by selecting the TfcImageForm and hitting the
<ESC> key.

• After you drop a TImage or TfcImager on a form and assign it to the
CaptionBarControl property, it is not necessary to actually assign a Picture
to these controls. If you do not need a graphic, then this will reduce the size
of your executable and .DFM file. You can size the control to the area that
you wish to be draggable. Any control dropped on this area (like a panel,
button, etc.) that has a mousedown or click event assigned will not be
draggable. Thus you can use a panel to make a certain portion of the
CaptionBarControl not draggable by assigning some dummy event to its
OnClick or OnMousedown events.

102 Chapter 4, 1stClass Component Reference, TfcImager - Ancestor

TfcImager

 The 1stClass Imager Control allows for the easy creation of spectacular images
that can be integrated into any application. All of the effects available through this control
can be easily manipulated by setting just a few properties.

TfcImager control

Use the BitmapOptions to add special effects to the image. Set the DrawStyle property to
specify if the image is stretched, tiled, centered, etc.

This control can be attached to a TfcDBTreeView or a TfcOutlookBar to paint a
background bitmap into these controls. See the Imager property for these controls

Ancestor
TGraphicControl
 TfcCustomImager
 TfcImager

Added Properties

AutoSize
Set this property to True to make the size of the TfcImager the same size as the
bitmap stored in its Bitmap property.

Data Type: boolean

Chapter 4 - 1stClass Component Reference, TfcImager - Added Properties 103

BitmapOptions
A set of different effects that can be applied to the Image.

AlphaBlend
A set of properties that allow the alpha-blending of TfcImager's Bitmap and this
Bitmap.

Amount A number ranging from 0 to 255 that specifies how much of the
TfcImager's image is blended with Bitmap. A value of 255 will
show only the image stored in AlphaBlend.Bitmap. A value of
0 will show only the image stored in TfcImager.Bitmap.

Data Type: Integer

Bitmap The bitmap to blend the base image with. The amount of
blending is dependent on the Amount property.

Data Type: TfcBitmap

Transparent Determines whether or not to use the upper-left hand corner
pixel of the AlphaBlend.Bitmap property as a transparent color.
If this is True, then any pixel of that color will not be blended
with the base bitmap.

Data Type: boolean

Color
Setting this property to a value other than clNone will result in the colors of the
image being heavily skewed towards a roughly equivalent shade of the specified
color. Setting Grayscale to True in conjunction with this property is highly
recommended.

Data Type: TColor

Contrast
Setting this property to a high value causes dark and light pixels to appear darker
and lighter relative to each other. This can make the image appear more vivid.
Setting this property to a low (negative) value causes dark and light pixels to
approach each other in intensity, thereby simulating a "faded" appearance. A
value of 0 will disable this effect.

Data Type: Integer

Embossed
When this property is True, the image will take on a bas-relief look. The image
appears embossed.

Data Type: boolean

104 Chapter 4, 1stClass Component Reference, TfcImager - Added Properties

GaussianBlur
The effects of this property can be noticed at low values. A value of 1 causes
noticeable blur. This property does not work well in tandem with the
Transparent property, as the transparent color will get blended with the rest of
the image. The effect of this property is similar to that of a camera going out of
focus.

Data Type: Integer

Grayscale
Setting this property to True will convert the image to a grayscale image. This
property has a similar (although not quite identical) effect as the setting the
Saturation property to 0.

Data Type: Integer

HorizontallyFlipped
Setting this property to True will flip the image along its Y axis.

Data Type: Integer

Inverted
Setting this property to True will invert every pixel to its opposite. This causes
an appearance similar to a camera photo's negative.

Data Type: boolean

Lightness
This property controls the overall lightness/brightness of the image. Positive
values lighten the image, whereas negative values darken the image.

Data Type: Integer

Rotation
This property controls the rotation of the image.

Angle The precise amount of rotation (in degrees) is
controlled by this property.

 Data Type: Integer

CenterX, CenterY These properties determine the coordinate about which
the rotation occurs. Values of –1, -1, cause the
rotation to occur at the center of the image.

 Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcImager - Added Properties 105

Saturation
This property determines the color intensity in the image. A low value causes the
image to appear more grayscale. A high value causes the image to appear awash
in color. This property has a large range. A noticeable increase in color
saturation is generally not noticeable until the value of this property approaches
500 or more.

Data Type: integer

Sharpen
When this property is set to even small values, the image appears to come into
better focus. Even a value of 1 causes a noticeable change.

Data Type: Integer

Sponge
This property causes a somewhat artistic effect to be applied to the image. The
result is an image that looks as though it was rendered using sponges or a thick
spray.

Data Type: Integer

TintColor
When this property is set to a value other than clNone, the base bitmap is painted
with a bias towards that color. Grayscale images, in particular, will appear in
this color.

Data Type: TColor

VerticallyFlipped
Setting this property to True will flip the image along its X axis.

Data Type: boolean

Wave
This property allows sophisticated warping effects to be applied to the image.
Note: The properties Ratio, XDiv, and YDiv must contain values greater than
zero for this effect to be applied.

Ratio Setting this property to a high value increases the overall
warping.

 Data Type: Integer

106 Chapter 4, 1stClass Component Reference, TfcImager - Added Properties

Wrap If this property is True, then portions of the image that would
otherwise be empty will contain the pixels on the opposite side
of the image as though the image is tiled.

 Data Type: boolean

XDiv, YDiv These properties control the level at which the image is
distorted along the X and Y axis respectively.

 Data Type: Integer

DrawStyle
This property allows for the image to be rendered in many different styles.

dsNormal
The image will be drawn with the upper-left hand corner aligned with the upper-
left hand corner of the TfcImager control. No stretching occurs.

dsCenter
The image is centered such that the space to the left is equal to the space to the
right, and the space above is equal to the space below. No stretching occurs.

dsStretch
The image is stretched to fill the entire client area of the TfcImager.

dsTile
The image is not repeated in a tile pattern across the client area of the imager.

dsProportional
The image is stretched to the maximum size possible while still retaining its
original aspect ratio. (i.e. The quotient of the image's width divided by its height
is equal from the original bitmap to the rendered image.)

dsProportionalCenter
The image is stretched to the maximum size possible while still retaining its
original aspect ratio. Additionally the resulting stretched image is centered.

Focusable
This property determines whether or not this control can receive focus. This is a
departure from a standard TGraphicControl. Other supporting properties and events
were added that will only work if this property is set to True.

Data Type: Boolean

Chapter 4 - 1stClass Component Reference, TfcImager - Added Properties 107

Picture
This property contains the actual graphic to display. Because it is of type TPicture, it
is possible to load any picture that the Delphi IDE is equipped to handle.

Data Type: TPicture

PreProcess
When this property is True (the default), all the effects are applied to an internal
bitmap the same size as the image defined in Picture. The final stage of the painting
process then stretches or tiles this bitmap onto the imager. When this is set to False,
the internal bitmap size is set to the size of the actual imager control. This is only
valid when DrawStyle is set to dsStretch, dsProportional, or dsTile. The result is that
because the effects are applied after stretching or tiling occurs, the final image can
look better. In addition, because the stretching operation only occurs once, greater
performance can be achieved in certain situations.

Data Type: boolean

RespectPalette
This property is only relevant on systems displaying 256 colors or less. When this is
True, and there is a palette defined for Picture (Picture must be a TBitmap and the
bitmap must have 256 colors or less) then the resulting image that is displayed will
look much closer to what is defined for the image than if this property were set to
False. However, this can occasionally result in slower performance.

Data Type: boolean

ShowFocusRect
This property does nothing if Focusable is False. Otherwise a focusrect will be drawn
around the perimeter of the image when this property is set to True.

Data Type: Boolean

SmoothStretching
When this property is True, a more lengthy algorithm is used when stretching the
image. The result is a slight performance loss, but a significant improvement in
appearance.

Data Type: boolean

TabOrder, TabStop
These properties depend on Focusable being true. See Delphi documentation for a
description of these standard TWinControl properties.

108 Chapter 4, 1stClass Component Reference, TfcImager - How To

Transparent
When this property is True, then a given color (dependent on the TransparentColor
property) will not be drawn when the imager is drawn and will therefore be "see-
through". The default color is the color on the upper-left hand corner of the image.

Data Type: boolean

TransparentColor
This property is only used when Transparent is True. It determines what color will
be the "see-through" color of the image. If it is set to clNone, then the upper-left
hand pixel of the image will be used. Otherwise, whatever value is set for this
property will be transparent.

Data Type: TColor

WorkBitmap (Runtime only)
Reference this property if you wish to gain access to the working bitmap. The
working bitmap refers to the image after it has been manipulated by the TfcImager’s
property settings. This differs from the Picture property, which is the original bitmap.
In order to convert a TfcBitmap to a TBitmap, use the TfcBitmap’s SaveToBitmap
method.

Data Type: TfcBitmap

How To

Integrate the imager into other 1stClass components
The TfcOutlookBar and TfcDBTreeView have native support for embedding a
TfcImager within its client area. To accomplish this, simply set the Imager property
of the TfcOutlookBar or the TfcDBTreeView to the desired TfcImager. The
associated TfcOutlookLists can be made transparent in order to see the background
image of the TfcOutlookBar by setting the Transparent property of the
TfcOutlookList to True.

Partially Blend a Second Bitmap with the Imager
Set the properties of the AlphaBlend sub-property. Set the AlphaBlend.Bitmap
property to the bitmap that you want to blend with. Set the AlphaBlend.Amount
property to indicate how much you want to blend the current image with the new
image. To specify that you want to not blend in any color that matches the color on
the upper-left hand corner of the blended bitmap, set the AlphaBlend.Transparent
property to True.

Chapter 4 - 1stClass Component Reference, TfcLabel - Ancestor 109

TfcLabel

 The 1stClass TfcLabel Control enables the easy creation of impressive text
effects. Using a TfcLabel one can add shadows, extrusions, engraved, embossed, or
outline effects.

TfcLabel with some sample effects.

All of the effects available through this control can be easily manipulated by setting just a
few properties of the TfcTextOptions. The 1stClass TfcLabel control has also added
OnMouseEnter and OnMouseLeave events so that you can easily add hot-tracking or URL
Links to the labels in your applications.

Ancestor
TGraphicControl
 TfcCustomLabel
 TfcLabel

Added Properties

DataField
Optional: This property contains the name of the field that you want to bind the
TfcLabel to. If you do not wish to bind the label to a table field, then leave both the
Datafield and Datasource properties blank. The default value is blank (unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the label control with data. The default value is blank (unbound).

Data Type: TDataSource

TextOptions
Please see the documentation for TfcText.

110 Chapter 4, 1stClass Component Reference, TfcLabel - Added Events

Added Events

OnMouseEnter
Occurs when the mouse cursor passes from outside the control to inside the control.
The parameters for this event are as follows:

Sender:TObject 1stClass label that is associated with this event.

OnMouseLeave
Occurs when the mouse cursor passes from inside the control to outside the control.
The parameters for this event are as follows:

Sender:TObject 1stClass label that is associated with this event.

How-to

Make multi-line labels
Double click on the Caption property to add multiple lines to your label control. The
TextOptions property contains wordwrap and line spacing properties to further customize
the appearance of multi-line text.

Center caption vertically or horizontally
Use the TextOptions.Alignment and TextOptions.VAlignment properties.

Add Hot-Tracking and URL Links
The following example demonstrates how you can use the OnMouseEnter and
OnMouseLeave events to easily create URL Links in your applications. In this example
the TfcLabel will turn blue when the mouse is over the label and the cursor will change to
a hand. Then after clicking on the label your internet browser will open up to the
specified URL.

1) Add a TfcLabel component to your form and set the following properties.
AddCaption = 'Go to the Woll2Woll Home Page '
Cursor = crHandPoint

2) Put the following code in the TfcLabel’s OnMouseEnter event to change the label’s
font to blue when the mouse enters the control.
Procedure TForm1.fcLabel1MouseEnter(Sender: TObject)
begin
 (Sender as TfcLabel).Font.Color := clBlue;
end;

3) Put the following code in the TfcLabel’s OnMouseLeave event to change the label’s
font to black when the mouse exits the control

Chapter 4 - 1stClass Component Reference, TfcLabel - Tips 111

Procedure TForm1.fcLabel1MouseLeave(Sender: TObject)
begin
 (Sender as TfcLabel).Font.Color := clBlack;
end;

4) Finally, put the following code in the TfcLabel’s OnClick event to open the registered
program for the specified selection.
Procedure TForm1.fcLabel1Click(Sender: TObject)
begin
 ShellExecute(Handle,'OPEN',PChar('http://www.woll2woll.com'),
 nil, nil, sw_shownormal);
end;

Tips

• Set AutoSize to False, before you set the WordWrap property to True. Then
size the label control to your desired width and height or set the Align
property.

• Some fonts may not be able to be rotated. TextOptions.Rotation works only
with TrueType fonts.

• You may often wish to set TextOptions.DoubleBuffered to True so that all of
the text is painted at once. See TfcText for more on this property.

112 Chapter 4, 1stClass Component Reference, TfcOutlookBar - Tips

TfcOutlookBar

 The 1stClass TfcOutlookBar allows for the grouping of TfcOutlookLists and any
other control into logical and easy to manage subsets. This control provides the
functionality seen in Microsoft's Outlook Bar, in addition to a number of other
enhancements.

TfcOutlookBar control

The TfcOutlookList within a TfcOutlookBar can present a vertical column or horizontal
row of icons for selecting program functions. You can additionally group the icons into
logical sets and divide them into separate outlook pages. Clicking on an outlook button
will roll the corresponding outlook page and its associated icons into view.

1stClass supports glyphs in the group buttons, and allows you to even embed controls in
each group. You can also embed a background image into the outlook list by using the
Imager property

If instead you wish to embed controls into an outlook page, then delete the TfcOutLookList
and then add the control.

1stClass provides the following design-time aids when configuring your shape button.

• If you right-click over the selected button in the OutlookBar, the popup menu
for those controls will appear in addition to the ones for the TfcOutlookBar.

• Double-clicking the control will bring up the standard collection editor. See
the Delphi / C++ Builder docs for information on this dialog.

• When you right-click the button group at design time, you can access the
following actions from the pop-up menu.

New Button
Selecting this item will cause a new button to be added to the ButtonGroup.

TfcOutlookPanel – Create OutlookList
Selecting this item will create an outlook list in the current outlook page.

TfcOutlookPanel – Paste
Selecting this item will paste the controls in the clipboard to the current outlook
page.

Chapter 4 - 1stClass Component Reference, TfcOutlookBar - Ancestor 113

Ancestor
TCustomPanel
 TfcCustomTransparentPanel
 TfcCustomButtonGroup
 TfcCustomOutlookBar
 TfcOutlookBar

Added Properties
The TfcOutlookBar provides all the properties, events, and methods of the
TfcButtonGroup. It additionally provides for the properties, events, and methods defined
in the following pages.

ActivePage
This property controls the currently selected button and page in the OutlookBar.

Animation
Manipulate the properties of this property to control the animation that occurs when
changing pages.

Data Type: TfcAnimation

The following are properties of TfcAnimation.

Enabled
Set to False to disable animation. You may wish to turn off animation if
ButtonClassName is set to TfcImageBtn, as animation can paint slowly in this
case.

Data Type: boolean

Interval
Specifies the amount of time that occurs between each frame of the animation.

Data Type: Integer

Steps
Specifies how many frames the animation will go through to get from one page to
the other.

Data Type: Integer

ButtonClassName
See the TfcButtonGroup.ButtonClassName property.

114 Chapter 4, 1stClass Component Reference, TfcOutlookBar - Added Properties

ButtonSize
Determines how large the buttons in the OutlookBar are. If Layout is set to
loVertical, then this affects the Height of the buttons. If Layout is set to loHorizontal,
this affects the Width of the buttons.

Data Type: Integer

Imager
Assign this property to an existing TfcImager control to give the TfcOutlookBar a
tiled background image. Each individual panel of an outlook bar is already
transparent, but to make the individual outlook lists transparent, set their
corresponding Transparent property to True.

Data Type: TfcCustomImager

OutlookItems
Same as the inherited TfcButtonGroup.ButtonItems property, but returns the derived
class TfcOutlookPages instead. TfcOutlookPages contains an array of
TfcOutlookPage, in which you can access an individual page by specifying an index.
For instance, the following returns the TfcOutlookPage associated with index.
OutlookItems[index]

TfcOutlookPage has the following properties which you can access via code.

OutlookBar
Returns the TfcOutlookBar associated with this page.

OutlookList
Returns the TfcOutlookList associated with this page.

Panel
Returns the TfcOutlookPanel associated with this page. TfcOutlookPanel is the
same as TPanel. It is introduced for component-editor reasons. There is no
enhanced functionality. However, this component is the parent of the associated
TfcOutlookList and any other control on the page.

Options
This property is a set of boolean flags that control various aspects of the OutlookBar.

Data Type: TfcOutlookBarOptions
Valid Values: cboAutoCreateOutlookList, cboTransparentPanels

Chapter 4 - 1stClass Component Reference, TfcOutlookBar - Added Events 115

cboAutoCreateOutlookList
If set (the default), each page will automatically have a TfcOutlookList created
for it. Otherwise, in order to create a TfcOutlookList for a page, the popup-menu
for the component, Create Outlook List, must be selected.

cboTransparentPanels
If set, the underlying panel of each page will be transparent. This property is
best used if the Transparent property of the entire control is also set to True.

PanelAlignment
This property determines where the buttons in the OutlookBar are grouped.

Data Type: TfcPanelAlignment
Valid Values: paDynamic, paTop, paBottom

paDynamic
When this is set (the default), the current page appears underneath the selected
button.

paTop
This causes all the buttons to be grouped at the top, and the current page to be at
the bottom.

paBottom
This is the opposite of paTop. All of the buttons are grouped at the bottom, and
the current page appears at the top.

ShowButtons
If this property is set to False, then the buttons in the button group will not be shown.
This is useful if you want to mimic the functionality of a PageControl which has the
TabVisible property of its TTabSheets set to False.

ShowDownAsUp
When this property is set to True, the selected outlook bar button will display as down
only while clicking the button. When the button has become selected, then this
button will be displayed as an up state button even though the actual state of the
button is down. The Default is False.

Data Type: Boolean

Added Events

OnChange
See TfcButtonGroup OnChange event

116 Chapter 4, 1stClass Component Reference, TfcOutlookBar - Added Methods

OnChanging
See TfcButtonGroup OnChange event

Added Methods

TfcOutlookPages methods (Access via OutlookItems property)
Add

Adds a new TfcOutlookPage to the OutlookBar and returns the newly created
TfcOutlookPage.
function Add: TfcOutlookPage;

TfcOutlookPage methods (Access via OutlookItems[index] property)
CreateOutlookList

Call this method if a TfcOutlookList for this item has been destroyed (or was
never created) and it needs to be recreated.

How To

Change the Speed and Style of the Animation
Adjust the Steps and Interval sub-properties of the Animation property.

Tips

• When embedding a lot of controls in the Outlookbar’s individual panels, you
may wish to turn Animation.Enabled to False for enhanced performance. As
an alternative, you can reduce the number of animation steps to improve
performance, while retaining some animation. Animation can also be slow if
you have set your ButtonClassName to TfcImageBtn.

• Delete the default TfOutlookList if you wish to embed your own controls in a
section. In addition, you can set the Options | cboAutoCreateOutlookList to
False if you do not want the OutlookLists to be automatically created. In
order to re-create the outlook lists, simply right-click on the outlook panel
and choose "Create OutlookList" from the pop-up menu.

Chapter 4 - 1stClass Component Reference, TfcOutlookList (Class) - Ancestor 117

TfcOutlookList (Class)
The TfcOutlookList allows for the grouping of a number of related items into an
organized and easy to use set. The items in the OutlookList can be clicked on or selected.
The layout can be arranged in a either a vertical or horizontal fashion. Note: This
component is only available through the TfcOutlookBar control.

TfcOutlookList control

Double-clicking the control will bring up the standard collection editor. See the Delphi /
C++ Builder docs for information on this dialog.

Ancestor
TCustomControl
 TfcCustomOutlookList
 TfcOutlookList

Added Properties

ClickStyle
This property determines the behavior of the TfcOutlookListItems when they are
clicked on.

csClick
This value causes the items to behave like buttons. Clicking on them will fire the
OnItemClick event.

csSelect
Clicking on items when ClickStyle is set to csSelect will cause the items to be
selected in a similar manner to Buttons that get selected when the buttons are
part of the same group. (i.e. The GroupIndex property of the buttons are set to the
same value that is greater than 0) Only one item at a time can be selected, and
that item will remain pressed until another item is selected.

Data Type: TfcCustomOutlookListClickStyle
Valid Values: csClick, csSelect

118 Chapter 4, 1stClass Component Reference, TfcOutlookList (Class) - Added Properties

HotTrackStyle
The appearance of the items as the mouse tracks over it is controlled by this property.

Data Type: TfcOutlookHotTrackStyle
Valid Values: hsIconHilite, hsItemHilite

hsIconHilite
When this is the HotTrackStyle, only the Icon is hot-tracked.

hsItemHilite
When this is the HotTrackStyle, the entire Item (Icon and Text) is hot-tracked.

Images
Controls the images that are displayed as the icon of each item.

Data Type: TCustomImageList

Items
This property contains TfcOutlookListItems collection, which in turn stores the
individual TfcOutlookListItem's of the OutlookList. It has a default array property
that can be accessed through the Items property itself. (i.e. Items[i])

For instance, Items[index] returns the TfcOutlookListItem associated with index.

The following are the properties of TfcOutlookListItem

Action
Assign this property if you wish to associate this outlook item with an action in a
TActionList control. See Delphi documentation on TActionList

Enabled
Set this property to False to disable the item. The item text is painted according
to the ItemDisabledTextColor property. Note: When setting this property to
False, you may wish to modify your default outlooklist Color so that the
ItemDisabledTextColor has more contrast and is more readable.

GlyphOffset
Assign this property when using the TextAlignment property. This property
defines the spacing between the glyph and the edge of the outlook list. This value
must be a non-zero value for the property to be enabled.

Hint
Assign this property to display a hint for the item. The hint is displayed at the
top left of the item rectangle.

Chapter 4 - 1stClass Component Reference, TfcOutlookList (Class) - Added Properties 119

ImageIndex
Controls which image in the associated TfcOutlookList's ImageList is displayed
with this item.

ItemDisabledTextColor
Set this property to change the color of the text that is used when painting
disabled items.

ItemRect
Returns the bounding rectangle of the item.

MouseOnItem
Returns true if the mouse is currently over the item.

Selected
This property controls whether or not the item is selected. This property is only
valid if the TfcOutlookList's ClickStyle property is set to csSelect. Setting this
property will clear the Selected property of the other items in the TfcOutlookList.

Separation
Indicates the amount of space between the item's Icon and its Text.

Text
The text that appears next to the Icon of each item.

TextAlignement
Use this property when the OutlookItem’s ItemLayout property is set to
blGlyphLeft or blGlyphRight, and you wish to align the text to the right or left
(instead of the default centering). Note: You will also need to set the item’s
GlyphOffset to a non-zero value for this property to be enabled.

120 Chapter 4, 1stClass Component Reference, TfcOutlookList (Class) - Added Properties

Text aligned vertically by using the TextAlignment property

Visible
Set this property to false to hide this item

ItemHighlightColor
Controls what color the upper-left sides of the item (when hot-tracked, lower-right
sides when pressed) will be painted in.

Data Type: TColor

ItemHotTrackColor
When the mouse is over an item, this property determines what color the item will be
painted in.

Data Type: TColor

ItemLayout
Controls the position of the glyph relative to the text.

Data Type: TButtonLayout

ItemShadowColor
Controls what color the lower-right sides of the item (when hot-tracked, upper-right
sides when pressed) will be painted in.

Data Type: TColor

ItemSpacing
This property controls how far apart each item in the TfcOutlookList is.

Data Type: Integer

ItemsWidth
Controls the width of each item in the TfcOutlookList. This property is only used if
the Layout property is set to loHorizontal.

Data Type: Integer

Layout
Determines whether the items are arranged from the top-down, or from the left to the
right. Affects the position and orientation of the arrows of the scroll buttons.

Data Type: TfcLayout
Valid Values: loVertical, loHorizontal

Chapter 4 - 1stClass Component Reference, TfcOutlookList (Class) - Added Events 121

PaintCanvas
For use with the OnDrawText event. Use this property when painting to the outlook
list from within the event.

Data Type : TCanvas

ScrollButtonsVisible
Set this property to False to hide the scroll buttons.

Data Type: boolean

ScrollInterval
This property controls how quickly the items in the OutlookList scroll when the user
holds down the mouse button over a scroll button. The value is the time in
milliseconds between each scrolling operation.

Data Type: Integer

Selected (Runtime only)
This read-only property returns the currently selected item in the OutlookList. This
property can be nil.

Data Type: TfcOutlookListItem

Transparent
Set this property to True in order to see the underlying Imager contained in the
outlook bar. The Imager property of the corresponding outlook bar must be set.

Data Type: boolean

Added Events

OnDrawItem
Use this event to customize the appearance of the items within the outlook list. Alter
the GlyphPos and TextPos parameters to affect the position of the glyph and text
portions of the item respectively. Reference the outlook list's PaintCanvas in
conjunction with the ItemRect property to draw onto the item. The parameters for
this event as follows:

OutlookList: The TfcOutlookList being drawn on.

Item: The current TfcOutlookListItem being drawn.

GlyphPos: This is the upper-left hand point of the rectangle that the glyph
will be painted to. Adjust this position to alter where the glyph
will be painted.

122 Chapter 4, 1stClass Component Reference, TfcOutlookList (Class) - How To

TextPos: This is the upper-left hand point of the rectangle that the text
will be painted to. Adjust this position to alter where the text
will be painted.

DefaultDrawing Set this parameter to False to prevent the item from being
painted by the outlook list.

The following example uses the OnDrawItem event to custom paint the outlook items.
The glyph is painted 5 pixels from the left border. The text is painted 10 pixels to the
right of the glyph. The selected item is painted with a blue background.
procedure TForm1.fcOutlookBar1OutlookList1DrawItem(
 OutlookList: TfcCustomOutlookList; Item: TfcOutlookListItem;
 var GlyphPos, TextPos: TPoint; var DefaultDrawing: Boolean);
begin
 GlyphPos.x := 5;
 TextPos.x := OutlookList.Images.Width + 15;

 if Item.Selected then
 begin
 OutlookList.PaintCanvas.Brush.Color := clBlue;
 OutlookList.PaintCanvas.FillRect(Item.ItemRect);
 end;
end;

OnItemClick
This event is only valid when the ClickStyle property is set to csClick. The event
fires when the TfcOutlookListItem is clicked on. The parameters for this event are as
follows:

OutlookList: The TfcOutlookList related to the item that was clicked on.

Item: The TfcOutlookListItem that was clicked on.

OnItemChange
This event is only valid when the ClickStyle property is set to csSelect. The event
fires when the active selection in the TfcOutlookList changes. The parameters for this
event are as follows:

OutlookList: The TfcOutlookList related to the item that was clicked on.

Item: The TfcOutlookListItem that has just become selected.

How To

Make the OutlookListItems appear like Outlook Express' OutlookBar
Change the HotTrackStyle property to hsItemHilite. You may want to change the
ItemHotrackColor, ItemHighlighColor, and ItemShadowColor properties to
clBtnFace, clBtnHighlight, and clBtnShadow respectively.

Chapter 4 - 1stClass Component Reference, TfcOutlookList (Class) - How To 123

124 Chapter 4, 1stClass Component Reference, TfcPanel - Ancestor

TfcPanel
The TfcPanel component is similar to the native TPanel component, with additional
options for run-time transparency and custom framing. These panels can even change
colors to indicate focus.

TfcPanel control with Transparency and Framing

Ancestor
TCustomPanel
 TfcCustomPanel
 TfcPanel

Added Properties

Frame
See TfcEditFrame for more information on this property. However,
MouseEnterSameAsFocus and AutoSizeHeightAdjust do not apply to the TfcPanel.

If you wish the panels to change to a different color when a control on the panel gets
the focus, then just set the Color property of the TfcPanel to the desired focused color
and the Frame.NonFocusColor property to the color when the panel loses focus. The
transparent property must be False in order to create this effect.

Data Type: TfcEditFrame

Transparent
Controls whether or not to display the TfcPanel transparently.

Data Type: Boolean

Chapter 4 - 1stClass Component Reference, TfcProgressBar - Added Properties 125

TfcProgressBar

 Use the TfcProgressBar to add a progress bar to a form. Progress bars provide
users with visual feedback about the progress of a procedure within an application. As the
procedure progresses, the rectangular progress bar gradually fills from left to right with
the system highlight color.

Added Properties

DataField
Optional: This property contains the name of the field that you want to bind the
control to. If you do not wish to bind the control to a table field, then leave both the
Datafield and Datasource properties blank. The default value is blank (unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the control with data. The default value is blank (unbound).

Data Type: TDataSource

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

DisplayFormat
Assign this property to format the text displaying the progress. See the Delphi
TNumericField.DisplayFormat property for more details on the format string. When
this property is unassigned the default text displays a trailing ‘%’ after the number.

Max
Specifies the upper limit of the range of possible positions. See the Min property.

126 Chapter 4, 1stClass Component Reference, TfcProgressBar - Added Properties

Min
Specifies the lower limit of the range of possible positions. Use Max along with the
Min property to establish the range of possible positions in a progress bar. When the
process tracked by the progress bar begins, the value of Position should equal Min.

BlockColor
The filled area of the progress bar is composed of a series of blocks. Each block’s
color is determined by the BlockColor property. If your project has enabled XP
themes then this property is ignored as the theme paints the progress and not the
control.

BlockSize
The filled area of the progress bar is composed of a series of blocks. Each block’s size
is determined by the BlockSize property. Set Smooth to True to display the progress
as one contiguous block

Orientation
This property determines if your progress bar is displayed vertically or horizontally.

Progress
Assign this property to change the current progress of the progress bar.

Smooth
Assign this property to display the progress as one contigous block. See also the
BlockSize property.

Step
This property is referernced by the StepIt method. StepIt increments the current
progress by this amount.

ShowProgressText
Set this property to false to hide the text that shows the current progress.

Chapter 4 - 1stClass Component Reference, TfcShapeBtn - Added Events 127

Added Events

OnChange
Use this event to write your own custom handler when the progress changes.

Added Methods

StepIt
Calling this method increments the current progress by the Step property.

procedure StepIt

StepBy
Calling this method increments the current progress by the amount defined by the
Delta parameter.

procedure StepBy(Delta: integer)

128 Chapter 4, 1stClass Component Reference, TfcShapeBtn - Added Methods

TfcShapeBtn

 The 1stClass TfcShapeBtn provides the combined functionality of the
TSpeedButton and the TBitBtn with the ability to choose any shape or color. Some of its
enhancements include the following:

• Use the Shape property to customize the shape of the button to one of the
pre-defined shapes: Arrow, Ellipse, RoundRect, Rectangle, Star, Triangle,
Trapezoid. In addition, by defining a simple list of points (see the PointList
property), any shape imaginable is possible.

• The button can appear in any color and the highlight colors that are
responsible for the 3D effects are completely changeable.

• Any of the shapes (even the custom shapes) can have one of four
orientations: Up, Down, Right, and Left.

• The shape is transparent outside its boundaries.

TfcShapeBtn controls

1stClass allows the button to be data-bindable. In addition, you can embed the button in
an InfoPower grid.

1stClass provides the following design-time aids when configuring your shape button.
When you right-click the button at design time, you can access the following actions from
the pop-up menu.

Set Shade Colors
Calls the UpdateShadeColors method (See TfcImageBtn.UpdateShadeColors) which
approximates appropriate highlight/shadow colors for the button based on the value of
the Color property.

Size To Default
Sets the size of the button to a square.

Chapter 4 - 1stClass Component Reference, TfcShapeBtn - Ancestor 129

Ancestor
TWinControl
 TfcCustomBitBtn
 TfcCustomImageBtn
 TfcCustomShapeBtn
 TfcShapeBtn

Added Properties
The TfcShapeBtn provides all the properties, events, and methods of the TfcImageBtn
with the exception of DitherStyle, ExtImage, ExtImageDown, Image, ImageDown, and
TransparentColor. It additionally provides for the properties, events, and methods
defined in the following pages.

Color
To change the color of the button, set this property to the desired color.

Data Type: TColor

DataField
Optional: This property contains the name of the field that you want to bind the
control to. If you do not wish to bind the control to a table field, then leave both the
Datafield and Datasource properties blank. The default value is blank (unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the control with data. The default value is blank (unbound).

Data Type: TDataSource

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

Orientation
Determines the direction that the button faces. For custom shapes, the points in the
point list are assumed to have an orientation of Up.

130 Chapter 4, 1stClass Component Reference, TfcShapeBtn - Added Properties

Note: Shapes that are both vertically and horizontally symmetric will obviously not be
affected by this property.

Data Type: TfcShapeOrientation
Valid Values: soLeft, soRight, soUp, soDown

PointList
When the Shape property is set to bsCustom, this property is used to define the set of
points that make up the shape of the button. The format is standard "x, y" notation.
Two special variables are allowed—Width and Height—which are replaced by the
width and height of the shape. In addition, the standard math operators "+", "-", "*",
and "/" (Add, Subtract, Multiply, and Divide, respectively) are valid. For example, to
define the points of a Right-Triangle shape, the PointList property should look like:
0, 0
Width, 0
0, Height
To define a regular hexagon for your shape, enter the following coordinates into the
PointList:
2 * Width / 7, 0
Width - 2 * Width / 7, 0
Width, 2 * Height / 7
Width, Height - 2 * Height / 7
Width - 2 * Width / 7, Height
2 * Width / 7, Height
0, Height - 2 * Height / 7
0, 2 * Height / 7

Data Type: TStringList

RoundRectBias
This property is only used when the Shape property is set to bsRoundRect. When this
is the case, RoundRectBias determines how much the corners of the rectangle are
rounded. This property defaults to a value of 25.

Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcShapeBtn - Added Methods 131

Shape
The shape of the button is determined by this property. If this property is set to
bsCustom, then the PointList property must be defined with a set of valid points. If
this is not set properly, the button will be displayed by a red box.

The standard shapes are pictured below:

Data Type: TfcButtonShape
Valid Values: bsRoundRect, bsEllipse, bsTriangle, bsArrow, bsDiamond, bsRect,
bsStar, bsTrapezoid, bsCustom

StaticCaption
Set this property to false to ignore the value from the underlying database (specified
by datasource/datafield). You may wish to set StaticCaption to true when embedding
in an InfoPower grid to show the same caption for each record.

Added Methods

SizeToDefault
Call this method to set the size of the button to a square. The side with the shorter
length will be increased to that of the side with the greater length.

procedure SizeToDefault; override;

How To

Define a custom shaped button
Fill the PointList with all the points in the button in "dot-to-dot" order. For more
information on this property, please see the documentation under PointList. Once you
have all the points set, set the Style property to bsCustom.

132 Chapter 4, 1stClass Component Reference, TfcShapeBtn - Tips

Automatically set the shade colors based on the current color
To automatically set the ShadeColors' highlight and shadow color sub-properties based on
the current value of the Color property, call the UpdateShadeColors method. At design
time, right-clicking on the control will yield an "Update Shade Colors" popup menu that
can selected to call UpdateShadeColors.

Mimic the look and behavior of the TSpeedButton's flat style
When the mouse goes over a TSpeedButton, the borders of the button appear with a
thickness of one pixel. To duplicate this behavior, first set the ShadeStyle property to
fbsFlat. At this point, the border will be two pixels thick. To make the borders one pixel
thick, just change the ShadeColors' Btn3dLight and BtnShadow properties to the same
color as your button, and the ShadeColors.BtnBlack property to what the BtnShadow
property was (usually clBtnShadow).

Allow the button to receive focus
Enable the boFocusable option in the Options property.

Change the focus color
Change the Options | boFocusable property to True and set the ShadeColors.BtnFocus to
the desired color.

Tips

• Some shapes look best when width and height are the same (like the star).

• When setting the color of a TfcShapeBtn to a color that is different then the
parent control, then often there is an optical illusion that makes the caption
appear to go in a different direction then the button. As a result you can use
the offsets property to make your text/glyphs move in the same direction.

Chapter 4 - 1stClass Component Reference, TfcStatusBar - Ancestor 133

TfcStatusBar

 The 1stClass TfcStatusBar is composed of a series of TfcStatusPanels. This
control provides the functionality seen in Delphi’s TStatusBar, in addition to major
enhancements in the panels it displays.

• Some of its features include the following:

• Automatically display hints from controls and menu items.

• Display the current date, time, or datetime information

• Automatically display the current state of your keyboard (Num Lock, Caps Lock,
Scroll Lock, Insert/Overwrite).

• Embed your own custom controls in the individual panels of the statusbar. Using the
control property you can embed gauges, progress bars, edits, comboboxes, spinedits,
etc.

• Display the computer information, richedit line/column information, and so much
more.

TfcStatusBar control

Double-clicking the control will bring up the standard collection editor. See the Delphi /
C++ Builder docs for information on this dialog.

Ancestor
TWinControl
 TfcCustomStatusBar
 TfcStatusBar

Added Properties

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

Images
Images contains a list of images that can appear on the Statusbar’s status panels.
Each panel’s ImageIndex property determines the specific image displayed on it. If
Images is unassigned, no images are displayed on the status panels.

134 Chapter 4, 1stClass Component Reference, TfcStatusBar - Added Events

Data Type: TCustomImageList

Panels
This property returns the collection TfcStatusPanels, which contain the individual
collection items (TfcStatusPanel) of the StatusBar control. TfcStatusPanels is
indirectly derived from TCollection.

TfcStatusPanels has a default array property, so each collection can be referenced
directly through panels using standard array notation. (i.e. fcStatusBar1.Panels[i]).
See the documentation on TfcStatusPanel for information on the properties and
methods of TfcStatusPanel.

Data Type: TfcStatusPanels

Added Events

OnDrawPanel
See TStatusBar’s OnDrawPanel event.

OnDrawKeyBoardState
Event occurs before drawing the text for a panel whose style property is set to
psOverwrite, psCapsLock, psScrollLock, or psNumLock. Used to customize the text
that is displayed. The parameters for this event are as follows:

StatusBar The statusbar that is displaying the keyboard information.

StatusPanel The panel that is displaying the keyboard information.

KeyIsOn True if the corresponding key is enabled. False, otherwise.

Rect The rectangle of the current status panel.

AText Assign AText to your own customized string you wish to display in
the panel.

Added Methods

TfcStatusPanels methods (access via Panels property)
Add

Adds another panel to the StatusBar. Returns the newly created TfcStatusPanel.
function Add: TfcStatusPanel;

PanelByName
Returns the Panel that is named AName.

Chapter 4 - 1stClass Component Reference, TfcStatusBar - How To 135

function PanelByName(AName: string): TfcStatusPanel;

GetPanelFromPt
Returns the TfcStatusPanel located at the specified x and y coordinates. Passing in (-
1, -1) for x,y will return the panel beneath the current cursor position, otherwise it
returns the panel that has the passed in point in its area.
Function GetPanelFromPt(x,y: Integer):TfcStatusPanel; virtual;

Invalidate
Call this method when you want to refresh the statusbar.
Procedure Invalidate; override;

How To

Display long hints of any control in the TfcStatusBar
When using the psHint Style of a TfcStatusPanel, 1stClass captures all hint messages
that are sent to the application and displays it without writing a single line of code. If
there is a long hint attached to the message, then the long hint will be displayed.
Otherwise, the short hint will be displayed. To assign a long hint to a control, set it’s
hint property using the following format. ‘Short Hint | This is the long hint part of a
hint’. This includes menu hints.

Change the display format of the date or time styles
There are two ways of approaching this. One is to use the OnDrawText event to
reformat a date, time, or datetime text. The other alternative is to set the Delphi
global variables ShortDateFormat and ShortTimeFormat properties. The example
below will make all dates use the LongDateFormat variable that defaults to display
dates in the following format: Thursday, March 11, 1999.
procedure TForm1.FormShow(Sender:TObject);
begin
 ShortDateFormat := 'dddddd';
 ShortTimeFormat := 'h:mm:ss am/pm';
End

For more information on using the format specifiers, see the Delphi documentation
for the FormatDateTime function.

Change the displayed text of a panel at runtime.
Using the OnDrawText event of the TfcStatusPanel, you can override the display of
the text of the status panel to whatever format you desire. If you are
internationalizing an application, you can easily convert hint strings to different
languages using this event. See the example below, if you wish to change the

136 Chapter 4, 1stClass Component Reference, TfcStatusBar - Tips

enabled\disabled look of the Overwrite key to display Insert when the keyboard is in
insert mode and Overwrite when the keyboard is in overwrite mode. First double
click on a TfcStatusBar and bring up the panels editor and select Panel0 and change
the style in the Object Inspector to psOverWrite. Then put the following code in it’s
OnDrawText event.
procedure TForm1.fcStatusBar1Panels0DrawText(
 Panel: TfcStatusPanel; var Text: String;
 var Enabled: boolean);
begin
 if (Text = 'Overwrite') and not Enabled then begin
 Enabled := True;
 Panel.TextOptions.Style := fclsLowered;
 Panel.TextOptions.ShadeColor := clNone;
 Panel.Font.Style := [];
 end
 else begin
 Panel.TextOptions.Style := fclsRaised;
 Panel.TextOptions.ShadeColor := clNone;
 Panel.Font.Style := [fsBold];
 Text := 'Insert';
 end;
end;

Tips

• The width property is a string instead of an integer in order to allow you to
define individual status panels as being a certain percentage of the
StatusBar’s width. For example, you may wish to have the main text panel
always be half the size of the StatusBar then you would set the first panels
width to ‘50%’. Then when or if the statusbar is resized this panel will be
sized accordingly.

Chapter 4 - 1stClass Component Reference, TfcStatusPanel (Class) - Ancestor 137

TfcStatusPanel (Class)
Each Panel in the StatusBar has its own TfcStatusPanel. This class is indirectly derived
from TCollectionItem. In addition to the properties and method found in that class, the
following are added.

Ancestor
TCollectionItem
 TfcCollectionItem
 TfcStatusPanel

Added Properties

Bevel
Determines the type of bevel the panel has. Default is pbLowered.

Data Type: TfcStatusPanelBevel

Valid Values: pbNone, pbLowered, pbRaised

Col (Runtime only)
When the style is set to psRichEditStatus and the Component is assigned to a
RichEdit control, then this read only runtime property contains the current column
number in the richedit control.

Data Type: Integer

Color
Use this property to set the Color of this status panel.

Data Type: TColor

Component
When the style property is set to psControl then this is the control that gets displayed
in the status panel. Setting this property to any control besides a richedit control will
set the Style property to psControl. Otherwise the Style will be set to
psRichEditStatus automatically. See Style for more information on this setting.

Data Type: TControl

Enabled
When set to False, this property sets the panel’s state to disabled which will disable
the text, glyph, or control embedded in the status panel.

138 Chapter 4, 1stClass Component Reference, TfcStatusPanel (Class) - Added Properties

Data Type: boolean

Font
Use the Font property to set the default font properties of the StatusPanel’s text.

Data Type: TFont

Hint
The hint that gets displayed when the mouse cursor remains over the panel for a short
period of time. If the Control property is assigned, then you will need to manually
assign the Control’s Hint and ShowHint properties.

Data Type: String

ImageIndex
Determines which images appears on the StatusPanel when the Style is set to psGlyph
and an imagelist is assigned to the StatusBar’s Images property.

Data Type: Integer

Indent
When the Style property is set to psTextOnly, this property specifies how much from
the border the text is spaced away. When the Alignment property is taLeftJustify, the
Indent property pertains to the left border.

Data Type: Integer

Margin
This property specifies how much of a margin to put around an attached control.

Data Type: Integer

Name
Use this property to set the name of this status panel. This property is used with the
PanelByName method of the TfcStatusPanels.

Data Type: String

PopupMenu
Use this property to assign a specific PopupMenu to an individual status panel.

Data Type: TPopupMenu

Style
Determines the type of information the status panel displays. There are a large
number of different styles to choose from.

Data Type: TfcStatusPanelStyle

Chapter 4 - 1stClass Component Reference, TfcStatusPanel (Class) - Added Properties 139

Valid Values: psTextOnly, psControl, psOverWrite, psCapsLock, psNumLock,
psDateTime, psDate, psTime, psGlyph, psRichEditStatus, psHint, psUserName,
psComputerName, psScrollLock

psCapsLock, psNumLock, psOverWrite, psScrollLock
These keyboard styles will display the current state of the keyboard. For
example, if your caps lock key is off, then the text displayed in the panel will be
disabled.

psComputerName, psUserName
These styles will display computer or user names in the status panel. The
psComputerName style retrieves the computer name of the current system. This
name is established at system startup, when it is initialized from the registry.
The psUserName style retrieves the user name of the current thread. This is the
name of the user currently logged onto the system.

psDate, psTime, psDateTime
Setting the Style property to one of these settings will cause the status panel to
display date, time, or datetime information. A built-in timer automatically
refreshes this information.

psHint
This powerful Style will save you a lot of time trying to display hints in the
statusbar. Just assign the Style property to psHint and all hint messages from
menus or controls will be captured and displayed in this status panel. The panel
will display the hint regardless of the ShowHint property of the menu item or
control. The status panel uses the long hint portion of the Hint string if it is
defined. For more information on hint strings see the Delphi documentation on
the hint property of TApplication.

psRichEditStatus
This Style is used to automatically display line and column information in a
TRichEdit component. Just assign the Component property to a
TCustomRichEdit descendant and this panel will display this information. Use
the OnDrawText event to format the text in any way that you wish.

psTextOnly
This is the default style setting. When set to psTextOnly the status panel will
display the contents of the Text property.

psControl
See the Component property. This style will embed any component that descends
from TControl and not TCustomRichEdit. The embedded component needs to
be assigned to the Component property of the TfcStatusPanel.

140 Chapter 4, 1stClass Component Reference, TfcStatusPanel (Class) - Added Events

TextOptions
See the documentation on TfcText for a description on how to customize the display
of the default text.

Width
Determines how wide the status panel is. This value is a string but can be only one of
two types of values.

It can be a string containing an integer (i.e. 5, 25, 30, etc.)

It can be a string containing a percentage (i.e. 5%, 50%, 66%, etc.)

Data Type: String

Added Events

OnDrawText
Event occurs immediately prior to drawing text onto the panel. The supplied Text
variable can change to override the text that gets drawn. The parameters for this event
are as follows:

Panel The status panel that is currently being painted to.

Text Set Text to change the display text for this status panel.

OnTextChanged
Occurs immediately after the text for the panel changes. Use this event to update
other panels or controls when the state has changed in the status panel that caused
this panel’s text to change. The parameters for this event are as follows:

Panel The TfcStatusPanel that is currently being painted to.

Text The new text value for the status panel.

Added Methods

GetRect
Returns the Rectangle of the Panel.
function GetRect: TRect;

Chapter 4 - 1stClass Component Reference, TfcText (Class) - Ancestor 141

TfcText (Class)
This class is used by many 1stClass components to alter the appearance of the text that is
shown within the control. It is a collection of properties that can vary the text from
appearing with an outline to extruding from the form.

Ancestor
TPersistent
 TfcText

Added Properties

Alignment
Specifies whether the text is drawn against the left margin, the right margin, or
centered.

Note: This property is only valid if Rotation is 0.

Data Type: TAlignment
Valid Values: taLeftJustify, taRightJustify, taCenter

DisabledColors
Specifies what colors to use for disabled text.

HighlightColor
Specifies what color to use to paint the highlight. The default is clBtnHighlight.

Data Type: TColor

ShadeColor
Specifies what color to use to paint the shadow. The default is clBtnShadow.

Data Type: TColor

DoubleBuffered
This property determines whether the label is painted to a temp bitmap before it is
displayed. Often (with certain TextOptions settings like extrusions, word-wrapped or
full-justified text), you may wish to set this to True.

Data Type: Boolean;

ExtrudeEffects
Specifies what kind of extrusion effects are applied to the text.

142 Chapter 4, 1stClass Component Reference, TfcText (Class) - Added Properties

Depth
Specifies how far, in pixels, the text extrudes out.

Data Type: integer

Enabled
This property must be True for any extrusion effects to be applied.

Data Type: boolean

FarColor
Set this to the color you want the extrusion to blend to. This is the portion of the
extrusion farthest away from the text.

Data Type: TColor

NearColor
Set this to the color you want the extrusion to blend from. This is the portion of
the extrusion nearest to the text.

Data Type: TColor

Orientation
Specifies the orientation of the extrusion. The mnemonic type indicates the
direction of the extrusion form the reference point of the text.

Data Type: TfcOrientation
Valid Values: fcTopLeft, fcTopRight, fcBottomLeft, fcBottomRight, fcTop,
fcRight, fcLeft, fcBottom;

Striated
If True, each layer of the extrusion will have alternating colors slowly blending
from NearColor to FarColor.

Data Type: boolean

HighlightColor
This property is only applicable when Style is set to fclsRaised or fclsLowered. It
determines what color is used to provide the highlight. By default, this is
clBtnHighlight.

Data Type: TColor

LineSpacing
Specifies the distance between lines. This property is only applicable when the text
takes up more than one line.

Data Type: Integer

Chapter 4 - 1stClass Component Reference, TfcText (Class) - Added Properties 143

Options
This property contains a set of optional flags that can be set to change the behavior of
the text drawing.

toShowAccel
If True, all ampersands (&) will be used to underline the following character.

toShowEllipsis
If True, and the text will not fit within its boundaries, ellipsis will be appended to
the end of the text to indicate that there is more, unseen text.

toFullJustify
If True, then the text in the control will be fully justified on the right and left
edges of the text with appropriate padding.

Warning: this operation can be expensive so use this property with caution. You
may wish to set DoubleBuffered to True when using this property.

OutlineColor
This property is only relevant when Style is set to fclsOutline. It controls what color
the outline around the text appears in.

Data Type: TColor

Rotation
This property determines at what angle the text will be drawn. The center point for
the rotation is at the center of the text. The angle is in degrees, so 0 is normal, and
180 is upside-down. This property is only valid for True-type fonts.

Data Type: Integer

ShadeColor
This property is the opposite of HighlightColor. It determines the color the shadow
appears in when Style is either fclsRaised or fclsLowered.

Data Type: TColor

Shadow
This is a set of properties that control the appearance of the shadow for the text.

Color
This property determines what color the shadow will be drawn in.

Data Type: TColor

Enabled
This property determines whether or not the shadow will be drawn.

144 Chapter 4, 1stClass Component Reference, TfcText (Class) - How To

Data Type: boolean

XOffset, YOffset
Determines how much the shadow will be offset from the rest of the text. If these
values are both zero, then the shadow will appear directly beneath the regular
text.

Data Type: Integer

Style
This property controls what style will be used when painting the text.

fclsDefault
Text is drawn in the normal fashion.

fclsLowered
Text appears engraved—lowered into the form. It is often desirable to set the
ShadeColor property to clNone in this style.

fclsOutline
The text has a one pixel outline surrounding it.

fclsRaised
The text appears to stick out in bas-relief from the form. It is often desirable to
set the ShadeColor property to clNone in this style.

VAlignment
This property determines whether the text will be drawn along the top margin, the
bottom margin, or centered between the two.

Data Type: TfcVAlignment
Valid Values: vaTop, vaVCenter, vaBottom

WordWrap
When this property is True, lines will be wrapped when they are longer than the
width of the space allotted them.

Data Type: boolean

How To

Add a shadow to the text
Set the Shadow.Enabled property to True. To move the shadow's placement
underneath the text, modify the XOffset and YOffset properties of Shadow.

Chapter 4 - 1stClass Component Reference, TfcText (Class) - Tips 145

Tips

• When using the fclsRaised or fclsLowered styles with a smaller font size, you
may wish to set the TextOptions.ShadeColor to clNone. Doing so will result
in a more optimal look for smaller font sizes.

146 Chapter 4, 1stClass Component Reference, TfcTrackBar - Tips

TfcTrackBar

 Use the 1stClass TfcTrackBar to put a track bar on a form. A track bar represents
a position along a continuum using a slider and, optionally, tick marks. A track bar can
also display a selected range marked by triangular ticks at the starting and ending
positions of the selection.

During program execution, the slider can be moved to the desired position by dragging it
with the mouse or by clicking the mouse on the bar. To use the keyboard to move the
slider, press the arrow keys or the Page Up and Page Down keys.

The following details some of the functionality of the trackbar control

• The 1stClass Trackbar can be bound to a database field (float or integer) or used
without a database.

• Use the Min, Max properties to control the range of the tracking

• Use the TextAttributes property to control the way text is painted within the
trackbar

• Use the Inverted property to flip the trackbar so that the highest value is on the
other side of the trackbar.

• Use the TickMarks, OnDrawTickText event, and TickStyle,
TextAttributes.TickDisplayFormat, and TextAttributes.TickLabelFrequency,

Chapter 4 - 1stClass Component Reference, TfcTrackBar - Ancestor 147

Frequency, and the OnDrawTickText event to customize the way tick labels are
painted.

• Use the ThumbLength, ThumbThickness, TrackThumbIcon, ThumbColor to
customize the way the thumb is painted.

• Use the PageSize and Increment properties to control how much the trackbar is
moved during PageUp, PageDown, vk_up, and vk_down keyboard entries.

Ancestor
TWinControl
 TCustomControl
 TCustomPanel
 TfcCustomPanel
 TfcTrackBar

Added Properties

DataField
Optional: This property contains the name of the field that you want to bind the
TfcTrackbar to. If you do not wish to bind the control to a table field, then leave both
the Datafield and Datasource properties blank. The default value is blank
(unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the TfcTrackBar control with data. The default value is blank (unbound).

Data Type: TDataSource

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

Frequency
Specifies the relative increment between tick marks on the track bar. For example a
frequency of 2.0 will put a tick mark at every 2.0 units.

Data Type: Double

148 Chapter 4, 1stClass Component Reference, TfcTrackBar - Added Properties

Increment
Assign this property to change how much the tracking thumb position is modified
when the arrow keys are used. The position is also rounded to a multiple of the
increment value.

Data Type: Double

Inverted
Set this property to true to invert the trackbar so that the starting value is on the right
instead of the left (horizontal trackbar), or the bottom instead of the top(vertical
trackbar).

Max
Specifies the maximum Position of a TTrackBar.

Data Type: Double

Min
Specifies the minimum Position of a TTrackBar.

Data Type: Double

Orientation
When Orientation is set to trfcVertical then the top of the trackbar is the starting drag
position. When Orientation is set to trfcHorizontal then the left of the trackbar is the
starting drag position.

PageSize
Assign this property to change how much the tracking thumb position is modified
when the PageUp, PageDown keys are used.

Position
Contains the current position of the slider of a TfcTrackBar.

ReadOnly
Assign this property to prevent the user from changing the value/position of the
trackbar.

Chapter 4 - 1stClass Component Reference, TfcTrackBar - Added Properties 149

SelEnd
Assign this property if you wish to display a selected range within the trackbar. This
property represents the upper value of the selection. Note: You can specify fractional
values for the increment (i.e. 0.5).

Data Type: Double

SelStart
Assign this property if you wish to display a selected range within the trackbar. This
property represents the lower value of the selection. See also the SelEnd property.

SliderVisible
Assign this property to False to disable the painting of the trackbar thumb

SpacingEdgeTrackbar
Assign this property to change the spacing (pixels) between the edge of the trackbar’s
boundary and the (top-vertical trackbar, left - vertical trackbar) of the trackbar’s
dragging rectangle.

SpacingLeftTop
Assign this property to change the spacing (pixels) between the edge of the trackbar’s
boundary and the (left-horizontal trackbar/top-vertical trackbar) of the trackbar’s
dragging rectangle.

SpackingRightBottom
Assign this property to change the spacing (pixels) between the edge of the trackbar’s
boundary and the (right-horizontal trackbar, bottom-vertical trackbar) of the
trackbar’s dragging rectangle.

TextAttributes
This property allows you to configure the way text is painted in the trackbar. The can
display the current track position, and can also display labels next to the tick marks.

This property contains the following sub-properties.

DataType: TfcTrackBarText

Position Assign this property to control where the text containing the
current track position is displayed. Valid values: tbtLeft,
tbtRight, tbtTop, tbtBottom.

150 Chapter 4, 1stClass Component Reference, TfcTrackBar - Added Properties

Data Type: TfcTrackBarTextPosition

OffsetX Assign this property to specify the number of pixels to shift the
text left or right from its default position.

OffsetY Assign this property to specify the number of pixels to shift the
text up or down from its default position.

Font Assign this property to customize the font of the text displayed.

DisplayFormat Assign this property to format the text displaying the position.
See the Delphi TNumericField.DisplayFormat property for
more details on the format string.

ShowText Set this property to true to display a formatted string revealing
the current position

TickLabelFrequency

 Assign this property to customize the frequency of the text
labels that appear next to the tick marks. The default of 0
means that no tick labels are drawn.

TickDisplayFormat

 Assign this property to format the text that appears next to a
tick mark See the Delphi TNumericField.DisplayFormat
property for more details on the format string.

ThumbColor
Assign this property to change the thumb color. If you are using themes, then this
property is ignored and instead the theme paints the thumb

ThumbLength
Assign this property to change the length of the thumb. For a vertical trackbar, this
property changes the width of the thumb instead of its height. This property will also
change the dimensios of the tracking rectangle.

ThumbThickness
Assign this property to change the thickness of the thumb. For a vertical trackbar, this
property changes the height of the thumb instead of its height. This property will also
change the dimensions of the tracking rectangle.

TickMarks
Set this property to determine where the tick marks are drawn.

Chapter 4 - 1stClass Component Reference, TfcTrackBar - Added Events 151

tmfcBottomRight indicates that the tick marks are drawn below (horizontal
orientation), or to the right (vertical orientation) of the tracking rectangle.

tmfcTopLeft indicates that the tick marks are drawn above (horizontal orientation), or
to the left (vertical orientation) of the tracking rectangle.

tmfcBoth indicates that tick marks are drawn on boths sides of the tracking rectangle.

TickStyle
Set TickStyle to specify whether the track bar should display tick marks, and if so,
how those tick marks are set. TickStyle has these possible values:

tsAuto Tick marks are automatically displayed at increments equal to the value
of the Frequency property.

tsManual Tick marks are displayed at the Min and Max values. Additional tick
marks can be set using the SetTick method.

tsNone No tick marks are displayed.

TrackColor
Assign this property to change the color of the tracking rectangle. If themes are
enabled, then this property is ignored, and instead the theme paints the tracking
rectangle.

TrackPartialFillColor
Assign this property to change the color of the progress rectangle. This rectangle is
drawn from the starting edge of the tracking rectangle to the current position.

TrackThumbIcon
Assign this property to use a custom glyph for the thumb

Data Type: TBitmap

Added Events

OnDrawTickText
Use this event to customize how the tick labels are painted. The parameters are
defined as follows.

Sender:TObject TfcTrackBr control that is associated with this event.

152 Chapter 4, 1stClass Component Reference, TfcTrackBar - Added Events

TickValue: Double This is the value associated with the tick label

Var ATickText: String Assign this property to change the text of the tick labels

Var ARect: TRect This is the default painting rectangle used to paint the
tick label

Var DoDefault: Boolean Set this property to False to disable the default painting
of the tick label.

Example: Using this event you can display text descriptions for tick marks instead of
numbers. The following example maps the numbers 0, 1, 2, and 3 to the strings Low,
Medium, High, and Top Priority.
procedure TTrackbarForm.fcTrackBar6DrawTickText(Sender:
TObject;
 TickValue: Double; var ATickText: String; var ARect: TRect;
 var DoDefault: Boolean);
var TickInt: integer;
begin
 TickInt:= Round(TickValue);
 if (abs(TickValue-TickInt)<0.01) then
 begin
 case TickInt of
 0: ATickText:= 'Low';
 1: ATickText:= 'Medium';
 2: ATickText:= 'High';
 3: ATickText:= 'Top Priority';
 end;
 end;
end;

OnChange
Write an OnChange event handler to take specific action whenever the position of the
slider may have changed. For example, if the track bar is being used to control
another object, update the other object from an OnChange event handler.

Chapter 4 - 1stClass Component Reference, TfcTreeCombo - Added Events 153

TfcTreeCombo

 Use the 1stClass TreeCombo to hierarchically organize and display items in a
drop-down list. Similar to the Image Combo found in the Windows Explorer Desktop
combo, the component supports most of the functionality found in the 1stClass
TfcTreeView, including the display of images.

TfcTreeCombo Screen shot

The drop-down list’s nodes and their attributes are defined through the controls Items
property. These nodes become the drop-down list when the program is executed. Clicking
on the Items property at design-time brings up the nodes property editor. See the
TfcTreeView documentation for information on using the nodes design-time property
editor.

To configure the display properties of the drop-down list use the TreeOptions property.
See the TfcTreeView Options property for more information on each option.

InfoPower support: If you are also using Woll2Woll’s InfoPower, you can embed the
TfcTreeCombo into InfoPower’s grid and record-view components. The steps for doing
this are the same as with any InfoPower control. See the InfoPower documentation for
more information on attaching a custom control to its grid or record-view. See the how-to
topics at the end of this section for information on displaying the images of a TreeCombo
for all rows in an InfoPower grid.

Use the ShowMatchText property to enable incremental searching as the user types. This
option also updates the control’s display so that the matching text is displayed in the
control.

Set the Style property to csDropDownList to force the entry to come from the list. If
AllowClearKey is False, then the user is not permitted to clear an existing entry.

154 Chapter 4, 1stClass Component Reference, TfcTreeCombo - Ancestor

To restrict the user to only being able to select terminal nodes, set the Options |
icoEndNodesOnly property. To prevent the drop-down tree from being initially expanded
set the Options | icoExpanded property to False.

Ancestor
TWinControl
 TCustomEdit
 TfcCustomCombo
 TfcCustomTreeCombo
 TfcTreeCombo

Added Properties

Anchors, AutoSelect, AutoSize, BorderStyle, Constraints, and HideSelection
These properties are equivalent to the properties of the same name found in TEdit.
See the Delphi / C++ Builder docs under TEdit for more information on these
properties.

AlignmentVertical
The value of this property determines how the Text in the treecombo will be aligned
in the combo vertically. This property defaults to fcavTop.

Data Type: TfcAlignVertical
Valid Values: fcavTop, fcavCenter

AllowClearKey
When the style is set to csDropDownList, the user is not able to clear their selection.
The AllowClearKey property when set to True, gives the user a convenient way to
clear the combos current selection simply by entering either the or
<BACKSPACE> character. The default value is False.

Data Type: boolean
Valid Values: True or False

ButtonEffects
See TfcButtonEffects for information on this property.

Data Type: TfcButtonEffects

ButtonGlyph
This property defines the custom bitmap used for the icon in the control when
ButtonStyle is set to cbsCustom.

Data Type: TBitmap

Chapter 4 - 1stClass Component Reference, TfcTreeCombo - Added Properties 155

ButtonStyle
Select the icon to use for this component.
Data Type: TfcComboButtonStyle
Valid Values: cbsEllipsis, cbsDownArrow, cbsCustom

cbsDownArrow The bitmap is displayed

cbsEllipsis The bitmap is displayed
cbsCustom: The icon defined by the ButtonGlyph property.

ButtonWidth
Determines the width of the Button. Set to zero for the default button width.

Data Type: Integer

Controller
See InfoPower TwwController property

DataField
Optional: This property contains the name of the field that you want to bind the
TfcTreeCombo to. If you do not wish to bind the treecombo to a table field, then leave
both the Datafield and Datasource properties blank. The default value is blank
(unbound).

Data Type: String

DataSource
Optional: This property contains the name of a TDataSource component that provides
the TreeCombo control with data. The default value is blank (unbound).

Data Type: TDataSource

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

DropDownCount
The DropDownCount property determines how many entries will appear in the
dropdown control.

Data Type: Integer

156 Chapter 4, 1stClass Component Reference, TfcTreeCombo - Added Properties

DropDownWidth
The DropDownWidth property determines how wide the dropdown TreeView control
will be. The default value is 0, which will automatically size the box based on the
width of the items in the drop-down list.

 Data Type: Integer

Frame
See TfcEditFrame for more information on this property.

Data Type: TfcEditFrame

Images
Images contains a list of images that can appear in the combo. Each node’s
ImageIndex property determines the specific image displayed for the node. If Images
is unassigned, no images are displayed in the combo.

Data Type: TCustomImageList

Items
See the Items property of TfcTreeView.

Options
This property contains a set of boolean values that control the behavior of the
TreeCombo.

Data Type: Set of TfcImgComboOption

Valid Values: icoExpanded, icoEndNodesOnly

icoExpanded
Setting icoExpanded to True expands all nodes in the drop-down list when the
treecombo is dropped down.

icoEndNodesOnly
Set to True to restrict the user’s selection to allows only nodes without children to
be selectable. Setting this property to False allows any node to be selectable. See
also the TreeView Nodes editor, as it allows you set a selectable property for each
node in the drop-down list. See also the OnCheckValidItem event to
programmatically determine if a node is selectable.

SelectedNode (Runtime and ReadOnly)
Reference this property to retrieve information about the node selected from the drop-
down list. See the TfcTreeView documentation for more information on the
TfcTreeNode type.

Chapter 4 - 1stClass Component Reference, TfcTreeCombo - Added Properties 157

Data Type: TfcTreeNode

ShowMatchText
When this property is set to True, the TreeCombo will perform ‘Quicken’ style
incremental searching. As the user enters text, the control will simultaneously search
and display the matching text in the control. The default value is True.

Data Type: boolean

Sorted
Setting this property to True will sort the list alphabetically. Once the control’s drop-
down items are sorted, the original hierarchy is lost. That is, setting the Sorted
property back to False will not restore the original order of items. The default value is
False.

Data Type: boolean

StateImages
StateImages contains a list of images that can appear in the combo’s drop-down list.
These images only appear in the drop-down list, and do not appear in the combo’s
edit control. Use the Images property if you wish to display images in both the edit
control and the drop-down list. Each node’s StateIndex property determines the
specific image displayed for the node. If StateImages is unassigned, no state images
are displayed in the combo’s drop-down list.

Data Type: TCustomImageList

StoreDataUsing
StoreDataUsing allows you to value stored in the database to one of the node
properties. Default is sdStoreText.

Data Type: TwwStoreData
Valid Values: sdStoreText, sdStoreData1, sdStoreData2

sdStoreText Store the node’s Text property.
sdStoreData1 Store the node’s Data1 property.
sdStoreData2 Store the node’s Data2 property.

Style
This property determines the style of the TreeCombo. The csDropDown Style creates
a drop-down list with an edit box in which the user can enter text. The
csDropDownList Style creates a drop-down list with no attached edit box, so the user
can’t edit an item or type in a new item.

Data Type: TfcComboStyle

Valid Values: fcCombo.csDropDown, fcCombo.csDropDownList

158 Chapter 4, 1stClass Component Reference, TfcTreeCombo - Added Events

TreeOptions
See the Options property of the TfcTreeView control.

Data Type: TfcTreeViewOptions

Valid Values: tvoExpandOnDblClk, tvoExpandButtons3D, tvoFlatCheckBoxes,
tvoHideSelection, tvoRowSelect, tvoShowButtons, tvoShowLines, tvoShowRoot,
tvoHotTrack, tvoAutoURL, tvoToolTips, tvoEditText, or tvo3StateCheckbox

TreeView (Runtime only)
Use this runtime only property to access the dropdown treeview control.

Data Type: TfcTreeView

Added Events

OnCalcNodeAttributes
Use this event to customize how the drop-down nodes are painted. See the
TfcTreeView OnCalcNodeAttributes event for more information on this event.

OnCheckValidItem
Use this event to define which nodes are selectable from the drop-down list.
Normally all nodes are selectable. See also the property Options | icoEndNodesOnly,
which allows only nodes without children to be selectable. See also the TreeView
Nodes editor, as it allows you set a selectable property for each node in the drop-down
list. The parameters for this event are as follows:

Sender:TObject TfcTreeCombo control that is associated with this
event.

Node:TfcTreeNode Node that is being examined to determine if it is
selectable.

Accept:boolean Set this property to False to prevent this node from
being selected.

OnCloseUp
This event is fired immediately after the drop-down list closes. Use this event to
perform your own custom action after the drop-down list closes. The parameters for
this event are as follows:

Sender:TObject TfcTreeCombo control that is associated with this
event.

Chapter 4 - 1stClass Component Reference, TfcTreeCombo - Added Methods 159

Select: boolean This value is True if the user is making a selection. If
the user is escaping out of the drop-down list without
making a selection, then the value of Select is False.

OnDropDown
This event is fired immediately before the combo drops down the list. The parameters
for this event are as follows:

Sender:TObject TfcTreeCombo control that is associated with this
event.

OnSelectionChange
This event is fired when the user selects a new value from the drop-down list. If
instead you are trying to detect any kind of change to the control’s text property, then
use the OnChange event. The parameters for this event are as follows:

Sender:TObject TfcTreeCombo control that is associated with this
event.

Added Methods

CloseUp
Call this method if you wish to force the drop-down list to close. Set Accept to True
if you would like the control to accept the last selected entry.
procedure CloseUp(Accept: boolean); override;

DrawInGridCell
Call this method if you wish to use the TreeCombo information to accurately draw the
selected item in an InfoPower grid. See the how-to topics at the end of this section for
an example of using this method.
Procedure DrawInGridCell(ACanvas:TCanvas; Rect:TRect;
 State:TGridDrawState); override;

DropDown
Call this method if you wish to force the drop-down list to display.

Procedure DropDown; override;

IsDroppedDown
Call this method when you want to determine if the dropdown control is visible.

Function IsDroppedDown:boolean; override;

160 Chapter 4, 1stClass Component Reference, TfcTreeCombo - How To

IsValidNode
Override this method if you wish for your own derived component to define its own
criteria for determining which nodes are selectable. If you are not subclassing you can
use the OnCheckValidItem event.
function IsValidNode(Node: TfcTreeNode): boolean; virtual;

SetSelectedNode
Call this method if you wish to set the SelectedNode property programmatically. Pass
Nil to clear the selectednode property.

 procedure SetSelectedNode(Node:TfcTreeNode); virtual;

How To

Creating a non-hierarchical combobox containing images
To create a combo that displays a non-hierarchical list of items with images, just attach a
TImageList to the tree combo using the Images property, and set the image index to the
appropriate image for each item that you add. Do not add sub-items unless you also want
a hierarchical drop-down list. In addition, remove tvoShowLines and tvoShowRoot from
the TreeOptions property.

Non-hierarchical list of items

Make Only End Nodes Selectable
Set the Options | icoEndNodesOnly property to True.

Iterating through a list of nodes in the DropDown Treeview.
You can iterate through the nodes by accessing the Items property and referencing the
TfcTreeView methods. For instance, the following code iterates through the list by using
the GetFirstNode method to get the first node in the tree, in conjunction with iterative use
of the GetNext method of the TfcTreeNode.

var Node: TfcTreeComboTreeNode;

Chapter 4 - 1stClass Component Reference, TfcTreeCombo - How To 161

begin
 Node :=
 TfcTreeComboTreeNode(fcTreeCombo1.Items.GetFirstNode);
 while Node<>Nil do
 begin
 { Perform your action here }
 Node := TfcTreeComboTreeNode(Node.GetNext);
 end;
end;

Initializing an unbound TfcTreeCombo selection.
If the combo is not tied to a datasource, you can initialize it by setting the control’s Text
property. If the combo is tied to a datasource, it will take on the value of the field in the
TDataSet.

Display the images of the TfcTreeCombo in all rows of an InfoPower Grid.
When you embed the TreeCombo containing images into an InfoPower grid, the image for
the control is displayed in the control, but not necessarily for the other rows of the grid.
In InfoPower 3000 you can just check the Control Always Paints checkbox in the Edit
Control tab page of the Grid’s Selected property dialog.

For InfoPower 2000, the following code allows you to paint the image in all the rows of
the grid for the column containing the TreeCombo.

procedure TForm1.wwDBGrid1DrawDataCell(Sender: TObject;
 const Rect: TRect; Field: TField; State: TGridDrawState);
var Control: TfcCustomCombo;
begin
 Control := fcGetControlInGrid(self,
 Sender as TwwDBGrid, Field.FieldName);
 if Control <> nil then Control.DrawInGridCell((Sender as
 TwwDBGrid).Canvas, Rect, State);
end;

Using the TreeView Items Editor
Refer to the TfcTreeview documentation for a reference to this property editor.

162 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Ancestor

TfcTreeNode (Class)
TfcTreeNode describes an individual node in a tree view control. Each node in a tree view
control consists of a number of attributes, and can itself contain 0 or more nodes.
TfcTreeNode is not a design time component you see in your IDE palette, but is created
and manipulated internally by the TfcTreeView.

Ancestor
TPersistent
 TfcTreeNode

Properties

AbsoluteIndex
AbsoluteIndex is the index of the tree node relative to the first tree node in a tree
node.

Use AbsoluteIndex to determine the absolute position of a node in a tree nodes object.
The first tree node in a tree nodes object has an index of 0 and subsequent nodes are
numbered sequentially. If a node has any children, its AbsoluteIndex is one less than
the index of its first child.

Data Type: integer

CheckboxType
This property returns the type of checkbox being used for the node.

tvctNone Node does not use a checkbox or radio button

tvctCheckbox Node is displayed as a checkbox

tvctRadioGroup Node is displayed as a radio button

Data Type: TfcTreeViewCheckboxType = (tvctNone, tvctCheckbox,
tvctRadioGroup);

Checked
Checked indicates if a node’s checkbox is currently checked

Data Type: boolean

Count
Use Count to determine how many child nodes belong to a tree node. Count includes
only immediate children, and not their descendants.

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Properties 163

Data Type: integer

Cut
Use Cut to alter the appearance of the tree node when its Cut property is set to True.
When Cut is True, the Treeview blends 50% white with any image defined by the
ImageIndex. This allows the node to appear as if it is marked for removal. The
following code attached to the TreeView’s OnKeyDown event will set the node’s Cut
property to True when Ctrl-X is pressed.
procedure TForm1.fcTreeView1KeyDown(Sender: TObject; var Key:
Word;
 Shift: TShiftState);
begin
 with (Sender as TfcTreeView) do begin
 if (ssCtrl in Shift) and (Key=ord('X')) and
 (Selected<>nil) then Selected.Cut:= True;
 end
end;

Note: The nodes are not actually removed. If you wish to perform some action on
the cut nodes at some later time, then you will need to iterate through the nodes in the
tree.

Data Type: boolean

Data
Data is a pointer to application-defined data associated with the tree node. Use the
Data property to associate data with a tree node. Data allows applications to quickly
access information about the entity represented by the node. Your own code is
responsible for allocating memory for data as well as freeing this memory.

Note: For convenience, the TfcTreeNode already allocates two string variables into
which you can store your own custom data. See the properties StringData and
StringData2. If your needs for storage go beyond this, you will need to use the Data
property.

Data Type: Pointer

Deleting
Deleting indicates whether a node's Destroy method has been called and it is in the
process of being deleted.

Use Deleting to avoid recursively trying to delete a node in response to events that
occur as a result of the node being deleted.

Data Type: boolean

164 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Properties

DropTarget
Use DropTarget to indicate that the node is a drag and drop target. When DropTarget
is True, the node is drawn in a style used to indicate a drag and drop target.

Note: Setting DropTarget to True does cause the node to automatically accept
dragged objects when they are released. The application must still implement the drop
behavior.

Data Type: boolean

Expanded
Expanded specifies whether the tree node is expanded.

When a tree node is expanded, the minus button is shown if the ShowButtons property
of the tree view is True and child nodes are displayed. Set Expanded to True to
display the children of a node. Set Expanded to False to collapse the node, hiding all
of its descendants.

Data Type: boolean

Focused
Focused indicates whether the node appears to have focus.

Tree view nodes are not windowed controls and so can’t receive input focus.
However, the user can edit them when the tree view control has focus. When Focused
is True, the node is surrounded by a standard focus rectangle and the user can edit the
label. Use Focused to determine if the user can currently edit a particular node in a
tree view.

Data Type: boolean

Grayed
Grayed indicates if a node’s checkbox background is currently grayed. See also
Options | tvo3StateCheckbox to allow checkboxes to cycle between the following 3
states (Unchecked, Checked, Checked | Grayed).

Data Type: boolean

Handle
Handle is the window Handle of the tree view that contains the node.

Use Handle to obtain the handle of the tree view that owns the node. This handle can
be passed as a parameter to Windows API function calls that require a handle to the
tree view.

Data Type: HWND

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Properties 165

HasChildren
HasChildren indicates whether a node has any children.

HasChildren is True if the node has subnodes, or False if the node has no subnodes.
If ShowButtons of the tree view is True, and HasChildren is True, a plus (+) button
will appear to the left of the node when it is collapsed, and a minus (-) button will
appear when the node is expanded.

If a node has no children, setting HasChildren to True will show a (+) plus button,
but will not add any child nodes and the node cannot be expanded.

Data Type: boolean

ImageIndex
ImageIndex specifies which image is displayed when a node is in its normal state and
is not currently selected.

Note: If the ImageIndex property is set to –1, then no image is displayed but the
text is left-aligned as if there were an image present. If the ImageIndex is set to –2
then the text is shifted to the left to take into account the image not being painted.
Setting ImageIndex to –2 is useful to remove the whitespace preceding the node’s
text.

Data Type: integer

Index
Index specifies the position of the node in the list of child nodes maintained by its
parent node.

Use Index to determine the position of the node relative to its sibling nodes. The first
child of the parent node has an Index value of 0, and subsequent children are indexed
sequentially.

Data Type: longint

IsVisible
IsVisible indicates whether the tree node is currently visible in the tree view image.

A node is visible if it is on level 0 or if all its parents are expanded. IsVisible indicates
whether the node is part of the current tree view image. It does not indicate whether
or not the node is scrolled into view when the tree view image is larger than the size
of the tree view control.

Data Type: boolean

Item
Item provides access to a child node by its position in the list of child nodes.

property Item[Index: Integer]: TfcTreeNode;

166 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Properties

Use Item to access a child node based on its Index property. The first child node has
an index of 0, the second an index of 1, and so on.

ItemID
ItemID is a handle of type HTreeItem and uniquely identifies each node in a tree
view.

Use this property to reference the nodes when making Windows API calls or calling
the GetNode method of the TfcTreeNodes that owns the item.

Data Type: HWND

Level
Level indicates the level of indentation of a node within the tree view control.

The value of Level is 0 for nodes on the top level. The value of Level is 1 for their
children, and so on.

Data Type: integer

MultiSelected
This property returns True if the node is currently part the multi-selected list in the
treeview. You can also assign this property to True to multi-select a node.

Data Type: boolean

OverlayIndex (Runtime)
OverlayIndex determines which image from the image list (Images property) is used
as an overlay mask. An overlay mask is an image drawn transparently over another
image in the tree view. For example, to indicate that a node is no longer available, use
an overlay image that puts an X over the current node's image. See the Delphi
TImageList Overlay method to define overlay images. You will also need to use the
TfcTreeView’s OnCalcNodeAttributes method to define the overlay index for a node.

Data Type: integer

Owner
Owner indicates which TfcTreeNodes object contains the tree node.

Use the Owner property to determine the owner of the tree node. Do not confuse
Owner with the TreeView property. Owner is the list of nodes used by the tree view to
manage its nodes. The TreeView property is the tree view that uses that list.

Data Type: TfcTreeNodes

Parent
Parent identifies the parent node of the tree node. A parent node is one level higher
than the node and contains the node as a subnode.

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Properties 167

Data Type: TfcTreeNode

Selected
Selected determines whether the node is the active node in the tree.

Set Selected to True to select the node. The appearance of a selected node depends on
whether it has the focus and on whether the system colors are used for selection.
When a node becomes selected, the tree view's OnChanging and OnChanged events
are triggered.

Note: This property does not relate to multi-selection. If you wish to check if a
node is multi-selected, use the MultiSelected property.

Data Type: boolean

SelectedIndex
SelectedIndex is the index in the tree view’s image list of the image displayed for the
node when it is selected.

Use the SelectedIndex property to specify an image to display when the tree node is
selected.

Data Type: integer

StateIndex
StateIndex indicates which image from the StateImages list to display for the node.

Use StateIndex to display an additional image for the node that reflects state
information. If StateIndex is –1, or a multiple of 16, then no state image is drawn.
The reason that a multiple of 16 is not supported is due to Microsoft not supporting
this in their TreeView common control.

Note: If a checkbox is displayed for the node, then StateImages are disabled for the
node.

Data Type: integer

StringData
StringData can be used to store your own information into a string. Often you may
want to associate other information for a node besides just its text property. This
property can be used for your own needs.

Note: If Options | tvoAutoURL is set to True, the TreeView uses StringData as a
URL link address. In this mode, when StringData is not blank, the TreeView
automatically displays the HandPoint mouse cursor when the mouse moves over the
URL link, and automatically opens the address when the user clicks on the link.

Data Type: String

168 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Methods

StringData2
StringData2 can be used to store your own information into a string. Often you may
want to associate other information for a node besides just its Text property. This
property can be used for your own needs.

Data Type: String

Text
Text is the label that identifies a tree node.

Use Text to specify the string that is displayed in the tree view. The value of Text can
be assigned directly at run-time or can be set within the TreeView Items Editor while
modifying the Items property of the TfcTreeView component. If the tree view allows
users to edit its nodes, read Text to determine the value given the node by the user.

Data Type: string

TreeView
TreeView specifies the tree view that displays the node. Use TreeView to determine
the tree view associated with the tree node.

Data Type: TfcCustomTreeView

Methods

AlphaSort
AlphaSort sorts the node’s children alphabetically based on their Text property. Call
AlphaSort to sort the subtree of the tree view alphabetically. If successful, the method
returns True.
function AlphaSort: boolean;

Assign
Assign copies the properties of another tree view node.
procedure Assign(Source: TPersistent); override;

If the Source parameter is a TfcTreeNode object, Assign copies the properties from
the source node. If Source is any other type of object, Assign calls its inherited
method, which copies information from any object that can copy to a tree node in its
AssignTo method.

Note: While Assign copies the HasChildren property, it does not copy the child
nodes. Be sure to copy any descendants after assigning the properties of another node
that has children.

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Methods 169

Collapse
Collapses a node.
procedure Collapse(Recurse: boolean);

When a node is collapsed, all of its subnodes are hidden. The plus button may be
displayed, depending on whether the tree view's ShowButtons property is set. If
Recurse is True, then all subnodes will be collapsed as well. When the node is next
expanded the children will still be collapsed. If Recurse is False, the child nodes
won't be collapsed and the next time the node is expanded, the children will be in the
same state as when Collapse was called.

CustomSort
Sorts the descendants based using a customized ordering function.
type TTVCompare =
 function(lParam1, lParam2,
 lParamSort: Longint): Integer stdcall;

function CustomSort(SortProc: TTVCompare;
 Data: Longint): boolean;

Use CustomSort to sort the descendents of a tree view nodes where the sort order is
defined by the SortProc parameter. The lParam1 and lParam2 parameters of the sort
procedure can be cast to TfcTreeNode objects are compared. The lParamSort
parameter of the sort procedure is the value of Data parameter of CustomSort. The
sort procedure should return a value less than 0 if lParam1 should come before
lParam2, should return 0 if the two values are equivalent, and should return a value
greater than 0 if lParam1 should follow lParam2.

If the SortProc parameter is nil, the AlphaSort method is called.

Note: See also the TfcTreeView CustomSort method.

Delete
Destroys the node and all its children.
procedure Delete;

Use the Delete method to delete a tree node and free all associated memory.

DeleteChildren
Deletes all children of the node.
procedure DeleteChildren;

Use the DeleteChildren method to delete all children of a tree node, freeing all
associated memory.

DisplayRect
Returns the bounding rectangle for a tree node.
function DisplayRect(TextOnly: boolean): TRect;

170 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Methods

If the TextOnly parameter is True, the bounding rectangle includes only the text of the
node. Otherwise, it includes the entire line that the node occupies in the tree-view
control.

EditText
Begins in-place editing of the specified node's text, replacing the text of the node with
a single-line edit control containing the text.
function EditText: boolean;

Call EditText to allow the user to edit the node’s label. This method implicitly sets the
Selected and Focused properties to True. When EditText is called, the tree view's
OnEditing event is triggered.

EndEdit
Ends the editing of a node's label.
procedure EndEdit(Cancel : boolean);

Call EndEdit to take the node out of edit mode. If the Cancel parameter is True, all
changes made by the user are discarded. If Cancel is False, EndEdit updates the
node’s Text property and the tree view’s OnEdited event occurs.

Expand
Expands the node to display all child nodes.
procedure Expand(Recurse: boolean);

When a node is expanded, its immediate subnodes are displayed. The minus '-' button
may be displayed, depending on whether the tree view's ShowButtons property is set.
If Recurse is True, all descendents of the immediate subnodes are expanded as well.

GetFirstChild
Returns the first child node of a tree node.
function GetFirstChild: TfcTreeNode;

Call GetFirstChild to access the first child node of the tree view node. If the node has
no children, GetFirstChild returns nil.

Note: GetFirstChild returns the same value as Item[0].

GetHandle
Returns the Handle property.
function GetHandle: HWND;

Calling GetHandle is the same as reading the Handle property.

GetLastChild
Returns the last immediate child node of the calling node.
function GetLastChild: TfcTreeNode;

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Methods 171

Call GetLastChild to find the last immediate child of a node. If the calling node has
no children, GetLastChild returns nil. GetLastChild returns the same value as
Item[Count-1].

GetNext
Returns the next node after the calling node in the tree view.
function GetNext: TfcTreeNode;

If the calling node is the last node, GetNext returns nil. It will return the next node
including nodes that aren't visible and child nodes. To get the next node at the same
level as the calling node, use GetNextSibling. To get the next visible node, use
GetNextVisible.

GetNextChild
Returns the next child node after Value.
function GetNextChild(Value: TfcTreeNode): TfcTreeNode;

Call GetNextChild to locate the next node in the list of immediate children of the tree
view node. If the calling node has no children or there is no node after Value,
GetNextChild returns nil.

GetNextSibling
Returns the next node in the tree view at the same level as the calling node.
function GetNextSibling: TfcTreeNode;

GetNextSibling will return the next node, regardless of whether it's visible. To find
the next node in the tree view including child nodes, use GetNext.

GetNextVisible
Returns the next visible node in the tree view after the calling node.
function GetNextVisible: TfcTreeNode;

Use GetNextVisible when iterating through all the visible nodes in the tree view. A
node is visible if all its parent nodes are expanded.

GetPrev
Returns the previous node in the tree view before the calling node.
function GetPrev: TfcTreeNode;

GetPrev will return the previous node whether or not it is visible. To get the previous
visible node, use GetPrevVisible.

GetPrevChild
Returns the previous child node before Value.
function GetPrevChild(Value: TfcTreeNode): TfcTreeNode;

172 Chapter 4, 1stClass Component Reference, TfcTreeNode (Class) - Methods

Call GetPrevChild to locate the previous node in the list of immediate children of the
tree view node. If the calling node has no children or there is no node before Value,
GetPrevChild returns nil.

GetPrevSibling
Returns the previous node before the calling node and at the same level.
function GetPrevSibling: TfcTreeNode;

GetPrevSibling returns the previous sibling node, regardless of whether it's visible.
To find the previous node in the tree view including all levels, use GetPrev.

GetPrevVisible
Returns the previous visible node before the calling node.
function GetPrevVisible: TfcTreeNode;

To get the previous node, including non-visible, use GetPrev.

HasAsParent
Returns True if Value is a parent node of the calling node.
function HasAsParent(Value: TfcTreeNode): boolean;

Use the HasAsParent method to determine if a node is a parent to a particular node.

IndexOf
Returns the position of an immediate child node of the calling node.
function IndexOf(Value: TfcTreeNode): Integer;

Call IndexOf to obtain the position of a child node among the children of the calling
node. If Value isn't an immediate child of the calling node, IndexOf returns -1. The
first child node has an index on 0, the second an index of 1, and so on.

IsRadioGroup
This method returns True if the node is part of a radio group
Function IsRadioGroup: boolean;

MakeVisible
Expands the parent nodes of a node.
procedure MakeVisible;

If a node's parent node(s) are collapsed and the node isn't visible, MakeVisible will
expand the node's parents to make the node visible.

MoveTo
Moves the node to another location in the tree view.
Type TfcNodeAttachMode = (fcnaAdd, fcnaAddFirst, fcnaAddChild,
fcnaAddChildFirst, fcnaInsert, fcnaInsertAfter);

Chapter 4 - 1stClass Component Reference, TfcTreeNode (Class) - Methods 173

procedure MoveTo(Destination: TfcTreeNode;
 Mode: TfcNodeAttachMode);

The Destination parameter determines where to move the node. The Mode parameter
is of type TfcNodeAttachMode and specifies how the node is to be reattached. These
are the possible values for the Mode parameter:
Value Meaning

fcnaAdd Adds the node to the end of the list.

fcnaAddFirst Adds the node at the beginning of the list.

fcnaAddChild Adds node as a child of the destination at end of the child list.

fcnaAddChildFirst Adds the node as a child at the beginning of the child list of the
destination.

fcnaInsert Insert the node before the destination node.

fcnaInsertAfter Insert the node after the destination node.

174 Chapter 4, 1stClass Component Reference, TfcTreeNodes (Class) - Ancestor

TfcTreeNodes (Class)
TfcTreeNodes maintains a list of tree nodes in a tree view control. The Items property of
the tree view control is a TfcTreeNodes object and maintains the collection of nodes in the
tree view. Nodes can be added, deleted, inserted and moved within the tree view. Access
the nodes in the tree view through the Items property of the tree view.

Ancestor
TPersistent
 TfcTreeNodes

Properties

Count
Count is the number of nodes maintained by the TfcTreeNodes object. Use Count to
determine the number of tree nodes in the tree view that owns the tree nodes object.
Count provides an upper bound when iterating through the entries in the Item
property array.

Data Type: integer

Handle
Handle is the window handle of the tree view control that owns the tree nodes object.
Use Handle to obtain the handle of the tree view that owns the tree nodes object.

Data Type: HWND;

Item
Item is an indexed array of all tree nodes managed by the TfcTreeNodes object.

property Item[Index: Integer]: TfcTreeNode;

Use Item to access to a node by its position in the tree view. The first node has an
index of 0, the second an index of 1, and so on. Item is the default property for
TfcTreeNodes. This means that the name of the Item property can be omitted when
indexing into the set of tree nodes. Thus, the line

FirstNode := fcTreeView1.Items.Item[0];

can be written

FirstNode := fcTreeView1.Items[0];

Note Accessing tree view items by index can be time-intensive, particularly when
the tree view contains many items. For optimal performance, try to design

Chapter 4 - 1stClass Component Reference, TfcTreeNodes (Class) - Methods 175

applications so that they have as few dependencies on the tree view’s item index as
possible.

Owner
Owner is the tree view control that uses the tree nodes object to implement its Items
property.

property Owner: TfcCustomTreeView;

Use the Owner property to access the tree view control that displays the nodes
maintained by the TfcTreeNodes object.

Data Type: TfcCustomTreeView

Methods

Add
Adds a new tree node to a tree view control.
function Add(Node: TfcTreeNode; const S: string): TfcTreeNode;

The node is added as the last sibling of the Node parameter. The S parameter
specifies the Text property of the new node. Add returns the node that has been
added. If the tree view is sorted, Add inserts the node in the correct sort order position
rather than as the last child of the Node parameter’s parent.

AddChild
Adds a new tree node to a tree view.
function AddChild(Node: TfcTreeNode;

const S: string): TfcTreeNode;

The node is added as a child of the node specified by the Node parameter. It is added
to the end of Node's list of child nodes. The S parameter specifies the Text property of
the new node. AddChild returns the node that has been added. If the tree view is
sorted, AddChild inserts the node in the correct sort order position, rather than as the
last child of the Node parameter.

AddChildFirst
Adds a new tree node to a tree view. Use AddChildFirst to insert a node as the first
child of the node specified by the Node parameter.
function AddChildFirst(Node: TfcTreeNode;

const S: string): TfcTreeNode;

The S parameter specifies the Text property of the new node. Nodes that appear after
the added node are moved down one row and reindexed with valid Index values.
AddChildFirst returns the node that has been added.

176 Chapter 4, 1stClass Component Reference, TfcTreeNodes (Class) - Methods

AddChildObject
Adds a new tree node containing data to a tree view.
function AddChildObject(Node: TfcTreeNode;

const S: string; Ptr: Pointer): TfcTreeNode;

The node is added as the first child of the node specified by the Node parameter.
Nodes that appear after the added node are moved down one row and reindexed with
valid Index values. The S parameter specifies the Text property of the new node. The
Ptr parameter specifies the Data property value of the new node.
AddChildObjectFirst returns the node that has been added.
Note: The memory referenced by Ptr is not freed when the tree nodes object is
freed.

AddChildObjectFirst
Adds a new tree node containing data to a tree view.
function AddChildObjectFirst(Node: TfcTreeNode; const S:
string;
 Ptr: Pointer): TfcTreeNode;

The node is added as the first child of the node specified by the Node parameter.
Nodes that appear after the added node are moved down one row and reindexed with
valid Index values. The S parameter specifies the Text property of the new node. The
Ptr parameter specifies the Data property value of the new node.
AddChildObjectFirst returns the node that has been added.

Note: The memory referenced by Ptr is not freed when the tree nodes object is
freed.

AddFirst
Adds a new tree node to a tree view.
function AddFirst(Node: TfcTreeNode;

const S: string): TfcTreeNode;

The node is added as the first sibling of the node specified by the Node parameter.
Nodes that appear after the added node are moved down one row and re-indexed with
valid Index values. The S parameter specifies the Text property of the new node.
AddFirst returns the node that has been added.

AddObject
Adds a new node containing data to a tree view.
function AddObject(Node: TfcTreeNode;

const S: string; Ptr: Pointer): TfcTreeNode;

The node is added as the last sibling of the node specified by the Node parameter. The
S parameter specifies the Text property of the new node. The Ptr parameter specifies
the Data property value of the new node. AddObject returns the node that has been
added.

Chapter 4 - 1stClass Component Reference, TfcTreeNodes (Class) - Methods 177

Note: The memory referenced by Ptr is not freed when the tree nodes object is
freed.

AddObjectFirst
Adds a new node containing data to a tree view.
function AddObjectFirst(Node: TfcTreeNode;

const S: string; Ptr: Pointer): TfcTreeNode;

The node is added as the first sibling of the node specified by the Node parameter.
Nodes that appear after the added node are moved down one row and reindexed with
valid Index values. The S parameter specifies the Text property of the new node. The
Ptr parameter specifies the Data property value of the new node. AddObjectFirst
returns the node that has been added.

Assign
Discards any current property information and replaces it with the information from
the Source.
procedure Assign(Source: TPersistent); override;

Use Assign to copy information from one tree nodes object to another. If Source is any
other type of object, Assign calls its inherited method, which will copy properties
from any object that can copy to a TfcTreeNodes object in its AssignTo method.

BeginUpdate
Prevents the updating of the tree view until the EndUpdate method is called.
procedure BeginUpdate;

BeginUpdate prevents the screen from being repainted when new nodes are added,
deleted, or inserted. Tree nodes affected by the changes will have invalid Index values
until EndUpdate is called.

Use BeginUpdate to prevent screen repaints and to speed processing time while
adding nodes to the tree view.

Note: Calls to BeginUpdate are cumulative; for every call to BeginUpdate there
must be a corresponding call to EndUpdate.

Clear
Deletes all tree nodes contained from the list managed by TfcTreeNodes.
procedure Clear;

Delete
Delete removes a tree node in the tree view specified by the Node parameter.
procedure Delete(Node: TfcTreeNode);

178 Chapter 4, 1stClass Component Reference, TfcTreeNodes (Class) - Methods

EndUpdate
Re-enables screen repainting and node reindexing that was turned off with the
BeginUpdate method.
procedure EndUpdate;

Use the EndUpdate method to enable screen updating after BeginUpdate has been
called. Calls to BeginUpdate are cumulative, so calling EndUpdate will only update
the tree view if every other call to BeginUpdate has already been matched by a call to
EndUpdate.

GetFirstNode
Returns the first tree node in the tree view.
function GetFirstNode: TfcTreeNode;

Use the GetFirstNode method to retrieve the first node in the tree view. GetFirstNode
returns the value of Item[0].

GetNode
Returns the tree node given the ItemId of the tree node.
function GetNode(ItemId: HTreeItem): TfcTreeNode;

ItemId is a handle to the node in the tree view.

Insert
Inserts a tree node into the tree view before the node specified by the Node parameter.
function Insert(Node: TfcTreeNode;

const S: string): TfcTreeNode;

Call Insert to add a new sibling to the Node parameter, immediately preceding Node.
The S parameter specifies the Text property of the new node. Insert returns the new
node.

InsertObject
Inserts a tree node containing data into the tree view before the node specified by the
Node parameter.
function InsertObject(Node: TfcTreeNode;

const S: string; Ptr: Pointer): TfcTreeNode;

Call InsertObject to add a new sibling to the Node parameter, immediately preceding
Node. The S parameter specifies the Text property of the new node and the Ptr
parameter specifies the Data property of the new node. InsertObject returns the new
node.
Note: The memory referenced by Ptr is not freed when the tree nodes object is
freed.

Chapter 4 - 1stClass Component Reference, TfcTreeNodes (Class) - Methods 179

FindNode
Searches for a node containing the string SearchText in the tree. If a match is found
the function returns the matching node. Set VisibleOnly to True to only search the
visible nodes. A node is visible if all the parent nodes are expanded.

 function FindNode(SearchText: string; VisibleOnly: boolean): TfcTreeNode;

180 Chapter 4, 1stClass Component Reference, TfcTreeHeader - Ancestor

TfcTreeHeader

 Use the 1stClass TreeHeader control to associate a header with a self-referencing
TfcDBTreeView control. See the how-to topics in the TfcDBTreeView for detailed
instructions on setting up a self-referencing tree.
To associate a header with a TfcDBTreeView control, assign its Header property. This
will cause the tree to display the field information in columns of data, defined by the
properties assigned to the header control.

Screenshot of a self-referencing Database treeview using a TfcTreeHeader control.

Ancestor
 TCustomControl
 TCustomPanel
 TfcTreeHeader

Required supporting components
TfcDBTreeView

Added Properties

Canvas
Canvas used to paint the header control. You may wish to refer to Canvas when using
the OnDrawSection event to customize the header’s painting.

Data Type: TCanvas

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

Chapter 4 - 1stClass Component Reference, TfcTreeHeader - Added Properties 181

HotTrack
Highlights the header sections as the mouse passes over them. If HotTrack is set to
True, the text on each header section appears highlighted when the mouse passes over
it at runtime.

Data Type: boolean

Images
Lists the images that can appear next to the text in header sections.

Use Images to provide a set of graphic images that can appear in the header sections.
Each header section can be associated with one of the images in this list using its
ImageIndex property.

Data Type: TCustomImageList;

Options
Specifies options for the header control.

thcoAllowColumnMove When true the header control allows a column to be
dragged to another position.

thcoSortTreeOnClick When true column header is clickable and fires the
OnSectionClick event.

thcoRightBorder When true, a right border is painted at the right of the
header control.

Sections
Lists the header sections (column headings).

The Sections property holds a TfcTreeHeaderSections—that is, a collection of
TfcTreeHeaderSection objects. At design time, header sections can be added,
removed, or modified with the Sections editor. To open the Sections editor, select the
Sections property in the Object Inspector, then double-click in the Value column to
the right or click the ellipsis (...) button.

Data Type: TfcTreeHeaderSections

Tree
Tree associated with the header control

Data Type: TWinControl

182 Chapter 4, 1stClass Component Reference, TfcTreeHeader - Added Events

Added Events

OnDrawSection
Use the OnDrawSection event to change the default painting of the header. The
parameters for this event are as follows:

HeaderControl: TfcTreeHeader Header control being painted

Section: TfcTreeHeaderSection Header section being painted

const Rect: TRect Rectangle area to paint the header section

Pressed: Boolean True if the header is currently pressed.

In the following example if the current section being drawn is not the field that the
treeview is sorted on then exit and do default painting, otherwise paint its background
in yellow. OrderByFieldName is a global variable set in the OnSectionClick event.

NOTE: Call sysutils.abort if you wish to override the drawing of the section
completely with your own code. Otherwise the default drawing of the text and images
will occur afterwards.
procedure TSelfDBForm.HeaderControl1DrawSection(
 HeaderControl: TfcTreeHeader; Section: TfcTreeHeaderSection;
 const Rect: TRect; Pressed: Boolean);
begin
 if OrderByFieldName <> Section.FieldName then exit;
 HeaderControl.Canvas.Brush.Color := clYellow;
 HeaderControl.Canvas.FillRect(Rect);
end;

OnResize
OnResize occurs when the header control is resized.

OnSectionClick
OnSectionClick occurs after the user clicks on a header section. The parameters for
this event are as follows:

HeaderControl: TfcTreeHeader Header control

Section: TfcTreeHeaderSection Header section that was clicked

OnSectionDrag
OnSectionDrag event occurs after a column has been dragged to a new position. The
parameters for this event are as follows:

Sender: TObject Header associated with the event

FromSection: TfcTreeHeaderSection Header Section being dragged to a new
location

Chapter 4 - 1stClass Component Reference, TfcTreeHeader - Added Events 183

ToSection TfcTreeHeaderSection Header section currently in the position where
the user dragged FromSection.

OnSectionMove
OnSectonMove occurs before a header section is dragged to a new location. The
parameters for this event are as follows:

HeaderControl: TfcTreeHeader Header control

Section: TfcTreeHeaderSection Header section being moved

DragFrom: integer Section index of header being dragged.

DragTo: integer Section index where header is to be moved to.

var AllowMove: Boolean Set to false to prevent the header from being
moved to the new location.

OnSectionResize
The OnSectionResize event occurs when a header section is resized at runtime. This
happens when the user positions the mouse pointer between two sections and drags
their border to the right or left.

HeaderControl: TfcTreeHeader Header control

Section: TfcTreeHeaderSection Header section that was resized

OnSectionTrack
Occurs as one of the header control’s sections is being resized. The OnSectionTrack
event tracks the dragging of a header section’s border as it happens. OnSectionTrack
occurs when the mouse pointer is positioned between two header sections and the left
mouse button is depressed.

The parameters for this event are as follows:

HeaderControl: TfcTreeHeader Header control

Section: TfcTreeHeaderSection Header section that was resized

Width: integer Indicate the size of the header section (in pixels)

State: TSectionTrackState Indicates the status of the event. It can be one of
the following values:

tsTrackBegin The border has not yet been dragged.

tsTrackMove The border is being dragged.

tsTrackEnd The border is no longer being dragged.

184 Chapter 4, 1stClass Component Reference, TfcTreeHeaderSection (Class) - Ancestor

TfcTreeHeaderSection (Class)
TfcTreeHeaderSection represents a section of a tree header control.
TfcTreeHeader uses TfcTreeHeaderSections to maintain a collection of
TfcTreeHeaderSection objects. These TfcTreeHeaderSection objects represent resizable
column headers. Each column header includes a text label and possibly a graphic image.

Ancestor
 TCollectionItem
 TfcTreeHeaderSection

Added Properties

Alignment
Specifies how text is aligned within the header section.

Data Type: TAlignment

AllowClick
Allows the section to respond to mouse clicks at runtime.

If AllowClick is set to True (the default), the header section can be clicked with the
mouse at runtime. Header sections behave like buttons when clicked: They loose their
raised borders and appear depressed on the form. To attach functionality to the
clicking of header sections, write an event handler for the header control’s
OnSectionClick event.

Data Type: Boolean

FieldName
Assign FieldName to associate the header section column with a specific field in the
TfcDBTreeView. The data value of the field is displayed in the tree underneath the
section column.

Data Type: String

ImageAlignment
Specifies how image is aligned within the header section.

Data Type: TAlignment

Chapter 4 - 1stClass Component Reference, TfcTreeHeaderSection (Class) - Added Properties
185

ImageIndex
Use ImageIndex to specify an image that appears next tot he text on the header
section. ImageIndex is the (0-offset) index of the image in the TCustomImageList
component that is available through the header control’s Images property.

Data Type: Integer

MaxWidth
Sets the maximum width, in pixels, for the header section. If MaxWidth = MinWidth,
the header section cannot be resized at runtime.

Data Type: Integer

MinWidth
Sets the minimum width, in pixels, for the header section. If MinWidth = MaxWidth,
the header section cannot be resized at runtime.

Data Type: Integer

Style
Determines how the header section’s text is displayed. If Style is set to hsText (the
default), the string contained in the Text property is displayed in the header section,
using the alignment specified by Alignment. The font is determined by the header
control’s Font property. A graphic image can appear beside the text if the ImageIndex
property is set.

If Style is set to hsOwnerDraw, the content displayed in the header section is drawn at
run time on the header control’s canvas by code in an OnDrawSection event handler.

Data Type: THeaderSectionStyle

Text
The Text property contains a string that identifies the header section or the column
beneath it. If Style is set to hsText, the value of Text appears in the header section.

Data Type: String

Width
The Width property determines the default width of the header section, in pixels.
Header sections can be resized at runtime by dragging their borders.

Data Type: Integer

186 Chapter 4, 1stClass Component Reference, TfcTreeView - Ancestor

TfcTreeView

 A tree view control is a window that displays a hierarchical list of items, such as
the headings in a document, the entries in an index, or the files and directories on a disk.

Each node in a tree view control consists of a label, a number of optional bitmapped
images, and optional checkboxes and radio buttons. Each node can have a list of subnodes
associated with it. By clicking on a node, the user can expand and collapse the associated
list of subnodes

Using a TreeView as a Database Filtering Front-end

Ancestor
 TWinControl
 TfcCustomTreeView
 TfcTreeView

Chapter 4 - 1stClass Component Reference, TfcTreeView - Required supporting components 187

Required supporting components
None

TfcTreeView Nodes Editor
Use the TfcTreeView Items editor at design time to add or delete nodes in a treeview
component, define node properties such as the text, checkbox attributes, and image
attributes. To invoke the TfcTreeView Items editor, you can either double-click the
TfcTreeView component or double-click the Items property in the Object Inspector. This
property editor is also used to define the drop-down list for a TfcTreeCombo component.

Items Group Box
The TfcTreeView Items editor contains an Items group box with an Items list box, a New
Item button, a New Sub item button, a Delete button, a Move Up button, a Move Down
button, a Load From File button, and a Save to File button. When you first add a treeview
control to a form, the Items list box is empty, and the New Sub Item and Delete buttons
are disabled.

• New Item
Click this button to add a new node to the tree. The new node is inserted as the last
child of the currently selected node’s parent. If the selected node is a root node, then
a node is added to the end of the list.

• New Subitem

188 Chapter 4, 1stClass Component Reference, TfcTreeView - TfcTreeView Nodes Editor

Click this button to add a new child node to the currently selected node in the tree.
The new node is inserted as the last child of the currently selected node.

• Delete
Click this button to remove the currently selected node from the tree.

• Move Up
Click this button to move the currently selected node so that it is before the prior
sibling node. If there is no prior sibling node, then this button does nothing. You can
also drag and drop nodes using the mouse to move a node to a new location. Drag
and drop will also allow you to move a node up and down the tree hierarchy.

• Move Down
Click this button to move the currently selected node so that it is after the next sibling
node. If there is no next sibling node, then this button does nothing You can also
drag and drop nodes using the mouse to move a node to a new location. Drag and
drop will also allow you to move a node up and down the tree hierarchy.

• Load From File
Click this to load the node information from a file. The file must have been generated
by calling the SaveToFile method of the TreeView or by pressing the Save To File
button of this dialog.

• Save To File
Click this to save the node information to a file. You can click on the Load From File
button reload the node information from a file.

Item Properties
The TreeView Items editor also contains an Item Properties group box for setting the
properties of the treeview item currently selected in the Items list box. The Item Properties
group box contains the following:

• Text
Text specifies the text displayed for the node in the tree

• Image Index
Image Index specifies which image is displayed when a node is in its normal state and
is not currently selected.

Note: If the Image Index is set to –1, then no image is displayed but the text is left-
aligned as if there were an image present. If the Image Index is set to –2 then the text
is shifted to the left to take into account the image not being painted. Setting Image
Index to –2 is useful to remove the whitespace preceding the node’s text.

Chapter 4 - 1stClass Component Reference, TfcTreeView - TfcTreeView Nodes Editor 189

• Selected Index
Selected Index can be set to specify an image to display when the tree node is
selected.

• State Index

State Index indicates which image from the StateImages list to display for the node.
Use State Index to display an additional image for the node that reflects state
information. If State Index is –1, or a multiple of 16, then no state image is drawn.
The reason that a multiple of 16 is not supported is due to Microsoft not supporting
this in their TreeView common control.

Note: If a checkbox is displayed for the node, then StateImages are disabled for the
node.

• String Data

String Data can be used to store your own information into a string. Often you may
want to associate other information for a node besides just its text property. This
property can be used for your own needs.

Note: If the TreeView’s Options | tvoAutoURL is set to True, the TreeView uses
String Data as a URL link address. In this mode, when String Data is not blank, the
TreeView automatically displays the HandPoint mouse cursor when the mouse moves
over the URL link, and automatically opens the address when the user clicks on the
link.

• String Data 2

String Data 2 can be used to store your own information into a string. Often you
may want to associate other information for a node besides just its Text property.
This property can be used for your own needs.

• Show Checkbox Using
Set Show Checkbox Using to True to display a checkbox or a radio-button to the left
of the node. The ‘checkbox’ can be displayed either as a Windows checkbox or a
radio-button. The end-user can toggle the checkbox using the mouse or the space key.

Checkbox This mode allows each node to be checked or unchecked by the end-
user. You can later inspect each node’s Checked property to
determine if the node is currently checked.

Radio Button This mode allows at most one node of a current level to have its
radio-button checked. When you enable a node as a radio-button all
sibling nodes become radio buttons as well. When the end-user
selects the radiobutton, all sibling nodes of the current level
automatically become unchecked.

190 Chapter 4, 1stClass Component Reference, TfcTreeView - Required property assignments

Note: When Show Checkbox Using is enabled, state images are disabled for the
node.

Note: If you wish to enable a checkbox for all nodes, you may instead want to set
the MultiSelectAttributes | MultiSelectCheckbox and MultiSelectAttributes | Enabled
properties to True.

• Selectable

When the property editor is invoked for a TfcTreeCombo object, an additional
checkbox is displayed, Selectable. Set Selectable to False to prevent the node from
being selected in the TfcTreeCombo’s drop-down list.

Required property assignments
None

Added Properties

AutoExpand
Specifies whether the nodes in the tree view automatically expand and collapse
depending on the selection. Set AutoExpand to True to cause the selected item to
expand and the unselected item to collapse.

Data Type: boolean

Canvas (Runtime only)
Provides access to the canvas. Use the Canvas property to paint to the canvas from the
OnCalcNodeAttributes and OnDrawText event handlers.

Data Type: TCanvas

ChangeDelay
Specifies the delay between when a node is selected and when the OnChange event
occurs. Set the ChangeDelay to 50 milliseconds to emulate the behavior of the tree-
view control used in Windows Explorer.

Data Type: integer

DisableThemes
If your project has enabled XP themes but you do not wish for this control to be
theme-enabled, then set this property to False.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Properties 191

DropTarget (Runtime only)
DropTarget specifies which item in the tree view appears as the target of a drag and
drop operation.

Read DropTarget to determine whether a node in the tree view is drawn as the target
of a drag and drop operation. Set DropTarget when specifying a particular node in
the tree view as the drop target of a dragged item.

Note: When DropTarget is set, the application must still handle the actual logic of
accepting the dragged object by the indicated node.

Data Type: TfcTreeNode

Images
Determines which image list is associated with the tree view. Use Images to provide
a customized list of bitmaps that can be displayed to the left of a node’s label.
Individual nodes specify the image from this list that should appear by setting their
ImageIndex property. See also the OnCalcNodeAttributes event to customize the
ImageIndex dynamically.

Data Type: TCustomImageList

InactiveFocusColor
Specifies the background color of the node that is selected when the treeview does not
have focus. This property is not applicable when Options | tvoHideSelection is set to
True.

Data Type: boolean

Indent
Specifies the amount of indentation in pixels when a list of child nodes is expanded.
Use Indent to determine how far child nodes are indented from their parent nodes
when the parent is expanded.

Data Type: integer

Items
Contains the individual nodes that appear in the tree view control. Individual nodes
in a tree view are TfcTreeNode objects. Using the Items property along with the
item’s index into the tree view allows you to access these individual nodes. For
example, to access the second item in the tree view, you could use the following code.

MyTreeNode := TreeView1.Items[1]

Note: Accessing tree view items by index can be time-intensive, particularly when
the treeview contains many items. For optimal performance, try to design your
application so that it has as few dependencies on the tree view’s item index as
possible.

192 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Properties

You should rarely need to use the array syntax, Items[index], as the TreeView has
more efficient supporting methods for iterating through its internal list.

To efficiently iterate through a TreeView use the GetFirstNode method to get the first
node in the tree, in conjunction with iterative use of the GetNext method of the
TfcTreeNode. For example…
var Node: TfcTreeNode;
begin
 Node := fcTreeView1.GetFirstNode;
 while Node<>Nil do
 begin
 { Perform your action here }
 Node := Node.GetNext;
 end;
end;

To set this property at design time in the Object Inspector, see the how-to topic on
using the TreeView Items editor

At run-time nodes can be added and inserted by using the IfcTreeNodes methods
AddChildFirst, AddChild, AddFirst, Add, and Insert.

Data Type: TfcTreeNodes

See the section on TfcTreeNodes for a detailed reference to this type.

LineColor
Specifies the color of the lines drawn in the TreeView

Data Type: TColor

MultiSelectAttributes
Specifies the attributes for enabling and controlling multi-selection in the TreeView.
This property contains the following sub-properties.

Data Type: TfcTVMultiSelectAttributes

AutoUnselect
When True, the TreeView will automatically unselect all previously selected
nodes when the user clicks on a node without using the Ctrl or Shift keys. In
addition the clicked node is selected.
Data Type: boolean

Enabled
When True, the TreeView will automatically use Ctrl-Click to select/deselect a
node, or Shift-Click to select a range of nodes. This provides a convenient way to
perform multi-selection. To allow the user to multi-select with a checkbox set
both the Enabled and MultiSelectCheckbox properties to True.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Properties 193

Data Type: boolean

MultiSelectLevel
Set this to the level you wish to enable multi-selection for. Defaults to 0, which
indicates only the root nodes can be selected. If set to –1, then any node in any
level can be selected.
Data Type: integer

MultiSelectCheckbox
When True, a checkbox is displayed in each node to allow the end-user a
convenient way of selecting nodes. The space key will also select the node when
this property is True.
Data Type: boolean

MultiSelectList (Runtime only)
When using multi-select in the treeview (See MultiSelectAttributes), the user’s
selected nodes are saved to this array. This allows you to later iterate through the list
of selected nodes.

Example: The following example displays the text of the selected records
var i: integer;
begin
 with fcTreeView1 do begin
 for i:= 0 to MultiSelectCount-1 do
 ShowMessage(MultiSelectList[i].Text);
 end;
end;

Data Type Array of TfcTreeNode

MultiSelectListCount (Runtime only)
MultiSelectListCount returns the number of multi-selected nodes in the treeview.

Data Type: integer

Options
This property contains a set of boolean values that control the appearance and
behavior of the TreeView.

Data Type: Set of TfcTreeViewOption

Valid Values: tvoExpandOnDblClk, tvoExpandButtons3D, tvoFlatCheckBoxes,
tvoHideSelection, tvoRowSelect, tvoShowButtons, tvoShowLines, tvoShowRoot,
tvoHotTrack, tvoAutoURL, tvoToolTips, tvoEditText, tvo3StateCheckbox (described
below).

194 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Properties

tvoExpandOnDblClick
Set to True to automatically expand the dbl-clicked node. Defaults to True.

tvoExpandButtons3D
Set to True to display the expand and collapse buttons as three-dimensional
buttons. Defaults to False.

tvoFlatCheckBoxes
Set to True to display checkboxes. Defaults to False, which displays checkboxes
in the tree-view as three-dimensional buttons.

tvoHideSelection
This property controls how a treeview displays the selected node when it does not
have the focus. Set to True to hide the selection when the TreeView does not
have focus. If set to False, the treeview displays the selected node in the color as
defined by the InactiveFocusColor property. Defaults to True.

tvoRowSelect
Set to True to highlight the entire row to the left edge of the screen. If set to
False, only the text is highlighted when a node is selected. Defaults to False.

tvoShowButtons
Set to True to display the expand and collapse buttons in the treeview. Defaults
to True.

tvoShowLines
Set to True to display the connecting lines in the treeview. Defaults to True.

tvoShowRoot
To show lines connecting top-level nodes to a single root, set the tree view's
tvoShowRoot and tvoShowLines properties to True.

tvoHotTrack

Specifies whether list items are highlighted when the mouse passes over them.
Set HotTrack to True to provide visual feedback about which item is under the
mouse. Set HotTrack to False, to provide no visual feedback about which item is
under the mouse.
See the tvoAutoURL property if you wish to define and open URL links from the
Treeview.

tvoAutoURL
When this property is set to True, the TreeView automatically does the following
for each node that has a non-blank StringData value. See also the
TfcTreeNode.StringData property.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Properties 195

1. Displays the text of the node in blue and underlined.

2. Displays the HandPoint mouse cursor when the user moves the mouse over
the node.

3. Request Windows to open the specified URL link. For instance if a node’s
StringData property was assigned the http://www.woll2woll.com, then the
TreeView would automatically open the registered Internet browser and open
the Woll2Woll home page.

tvoToolTips
Set tvoToolTips to True to automatically display a hint box containing the text of
the node, when the entire text of the node cannot otherwise be displayed.

tvoEditText
Set tvoEditText to True to allow the end-user to edit the text of the node.

tvo3StateCheckbox
Set to True to allow checkboxes to cycle between the following 3 states
(Unchecked, Checked, Checked | Grayed). If tvo3StateCheckbox is False, then
the checkbox toggles between the 2 states (Unchecked, Checked).

RightClickNode (Runtime only)
This returns the node that was most recently right-clicked. If the right-clicked the tree
and the mouse cursor was not over a node, then this property returns nil. For instance
this could happen if the tree only had a few nodes, and the user clicked on the
whitespace beneath the last tree node.

This property is particularly useful if you are using a PopupMenu and wish to
determine which node was right-clicked. When the property RightClickSelects is
True, you can directly refer to the Selected property to determine the right-clicked
node. However when RightClickSelects is False, you must refer to the
RightClickNode property.

RightClickSelects
Setting this property to True will cause the tree to make the right-clicked node the
selected node. If this property is False, you can still gain access to the right-clicked
node by referring to the RightClickNode runtime property.

Note: Do not confuse this property with the native Delphi/Builder TTreeView
RightClickSelect property. That property has no relationship to this property.

Data Type: boolean

Selected (Runtime only)
Selected returns the selected node in the tree view.

196 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Properties

Read Selected to access the selected node of the tree view. If there is no selected node,
the value of Selected is nil.

Set Selected to set a node in the tree view. When a node becomes selected, the tree
view's OnChanging and OnChanged events occur. Also, if the specified node is the
child of a collapsed parent item, the parent's list of child items is expanded to reveal
the specified node. In this case, the tree views OnExpanded and OnExpanding events
occur as well.

Data Type: TfcTreeNode

SortType
Determines if and how the nodes in a tree view are automatically sorted.

Once a tree view is sorted, the original hierarchy is lost. That is, setting the SortType
back to fcstNone will not restore the original order of items. These are the possible
values:

Value Meaning

fcstNone No sorting is done.

fcstData The items are sorted when the Data object or SortType is changed.

fcstText The items are sorted when the Caption or SortType is changed.

fcstBoth The items are sorted when either the Data object, the Caption or
SortType is changed.

Optionally, the OnCompare event can be hooked to handle comparisons. The
OnCompare event will be called to compare two nodes for sorting.

Data Type: TfcSortType

Valid Values: fcstNone, fcstData, fcstText, fcstBoth

StateImages
Determines which image list to use for state images. Use StateImages to provide a set
of bitmaps that reflect the state of tree view nodes. The state image appears as an
additional image to the left of the item's icon.

Data Type: TCustomImageList

TopItem (Runtime only)
TopItem is the topmost node that appears in the tree view. When TopItem is changed,
the tree view scrolls vertically so that the specified node is topmost in the list view.

Data Type TfcTreeNode

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Events 197

Added Events

OnCalcNodeAttributes
This event allows you to change the node and painting canvas attributes before the
node is painted by the TreeView. Use this event to change the font, background
color, the node’s text, and other node attributes.

TreeView: TfcCustomTreeView TreeView associated with the node to be painted.
If you wish to access the painting canvas to
change the painting attributes of the node, refer to
the TreeView's Canvas property.

Node: TfcTreeNode Node that is about to be painted

AItemState: TfcItemStates State is the item's current state: one or more of
fcisSelected, fcisGrayed, fcisDisabled,
fcisChecked, fcisFocused, fcisDefault, fcisHot,
fcisMarked, fcisIndeterminate.

Example: The following code causes the root nodes to paint with boldfaced text.
Procedure TreeViewDemoForm.fcTreeView1CalcNodeAttributes(
 TreeView: TfcCustomTreeView;
 Node: TfcTreeNode; State: TfcItemStates);
begin
 if Node.Level=0 then TreeView.Canvas.Font.Style:= [fsBold];
end;

OnChange
OnChange occurs whenever the selection has changed from one node to another.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node whose selection
state has changed.

OnChanging
OnChanging occurs whenever the selection is about to be changed from one node to
another.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter specifies the currently
selected node.

198 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Events

AllowChange: boolean Set AllowChange to False, to prevent selection
from moving to a new node.

OnCollapsed
OnCollapsed occurs after a node has been collapsed. Write an OnCollapsed event
handler to respond after a node in the tree view collapses.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node whose children
are no longer visible.

OnCollapsing
OnCollapsing occurs when a node is about to be collapsed.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter specifies the node that is
about to be collapsed.

AllowCollapse: boolean Set the AllowCollapse parameter to False to
prevent the node specified by the Node parameter
from being collapsed.

OnCompare
OnCompare occurs when two nodes must be compared during a sort of the nodes in
the tree view. Write an OnCompare event handler to customize the sort order of the
nodes in the tree view. If an OnCompare event handler is not provided, tree view
nodes are sorted alphabetically, based on their labels.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node1, Node2: TfcTreeNode The Nodes being compared

Data: Integer Not currently used

Compare: Integer Set the Compare parameter to a value less than 0
if Node1 is less than Node2. Set Compare to 0 if
Node1 is equivalent to Node2, and set Compare to
a value greater than 0 if Node1 is greater than
Node2.

OnDblClick
See OnMouseDown event.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Events 199

OnDeletion
OnDeletion occurs when a node in the tree view is deleted. Write an OnDeletion
event handler to respond when a node is deleted from the tree view control.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node to be deleted

OnDrawText
This event allows you to change the default text painting of the node. You will rarely
need to use this event, as the OnCalcNodeAttributes is the preferred event to use to
change a node’s font, text, background, and other attributes. You will only need this
event if you wish to override the actual painting of the node’s text.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the node. If you wish to
access the painting canvas, refer to the TreeView's
Canvas property.

Node: TfcTreeNode Node that is about to be painted

ARect: TRect Default rectangle where the text is to be painted.

AItemState: TfcItemStates State is the item's current state: one or more of
fcisSelected, fcisGrayed, fcisDisabled,
fcisChecked, fcisFocused, fcisDefault, fcisHot,
fcisMarked, fcisIndeterminate.

DefaultDrawing: boolean Specifies whether the control should paint the
item.

Example: The following example underlines the character following ampersands in
the node’s text by using the TCanvas DrawText method. Note that the code below
does NOT make the node accessible through an accelerator key. If you desire this
behavior you would need to write the code to trap the keys on your own using events
such as the OnKeyDown event.

 Procedure TForm1.fcTreeView1DrawText(
 TreeView: TfcCustomTreeView;
 Node: TfcTreeNode; ARect: TRect; AItemState: TfcItemStates;
 var DefaultDrawing: boolean);
 begin
 { Underlines characters following ampersand }
 TreeView.Canvas.DrawText(Node.Text, ARect, 0);
 if fcisFocused in AItemState then begin { Draw focus rect }
 InflateRect(ARect, 1, 1);
 TreeView.Canvas.DrawFocusRect(ARect);
 end;

200 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Events

 DefaultDrawing := False;
 end;

OnEdited
Occurs after the user edits the Text property of a node. This event can occur only if
Options | tvoEditText is set to True.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node whose label was
edited

S: string The S parameter is the new value of the node’s i
property. The node’s label can be changed in an
OnEdited event handler before the user’s edits are
committed

OnEditing
Occurs when the user starts to edit the Text property of a node. Write an OnEditing
event handler to determine whether the user is allowed to edit the label of a specific
node in the tree view.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node whose label is
about to be edited

AllowEdit: boolean Set the AllowEdit parameter to False to prevent
the user from editing the node specified by the
Node parameter. To disallow editing of all nodes
in the tree view, set the Options | tvoEditText
property to False instead.

OnExpanding
Occurs when a node is about to be expanded. Write an OnExpanding event handler to
determine whether a node can be expanded.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter is the node that is about to be
expanded

AllowExpansion Set the AllowExpansion parameter to False to
prevent the node from expanding.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Events 201

OnExpanded
Occurs after a node is expanded. Write an OnExpanded event handler to respond
when a node in the tree view is expanded.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node parameter specifies the node whose
children are now displayed to the user.

OnGetImageIndex
Occurs when the tree view looks up the ImageIndex of a node. Write an
OnGetImageIndex event handler to change the image index for the particular node
before it is drawn. For example, the bitmap of a node can be changed to indicate a
different state for the node.

Note: If the Node's ImageIndex property is set to –1, then no image is displayed but
the text is left-aligned as if there were an image present. If the Node's ImageIndex is
set to –2 then the text is shifted to the left to take into account the image not being
painted. Setting ImageIndex to –2 is useful to remove the whitespace preceding the
node’s text.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The node whose ImageIndex you wish to change.

OnGetSelectedIndex
Occurs when the tree view looks up the SelectedIndex of a node. Write an
OnGetSelectedIndex event handler to change the selected image index of a node
before it is drawn.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode The Node whose Selected image index you wish
to change.

OnItemChange
This event allows you to take some custom action when a node’s text or image index
is changed, or if a node is added or deleted from the TreeView. Do not confuse this
event with the OnChange event, which is fired when you change the active node.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the node that is
changed.

202 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Events

Node: TfcTreeNode Node that is changed

Action: TfcItemChangeAction Action associated with the OnItemChange event.
It can be one of the following values.

 icaAdd : New node added to the TreeView

 icaDelete : Node is removed from the TreeView

 icaText : Text is modified for node

 icaImageIndex : ImageIndex property for node is
modified.

NewValue: Variant Data associated with the action. If
Action=icaText, then NewValue is the new text. If
Action=icaImageIndex, then NewValue is the new
ImageIndex value. Otherwise this value is Null.

OnMouseDown, OnMouseUp, OnDblClick
Use this event to perform some custom action when the mouse is pressed, released, or
Double-clicked over the TreeView. The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode Node that the mouse is over at the time of the
event.

Button: TMouseButton Distinguishes which mouse button generated the
mouse event. Can be mbLeft, mbRight, or
mbMiddle.

Shift: TShiftState Use the Shift parameter to respond to the state of
the shift keys and mouse buttons. Shift keys are
the Shift, Ctrl, and Alt keys or shift key-mouse
button combinations.

X, Y: Integer X and Y are pixel coordinates of the new location
of the mouse pointer in the client area of the
TreeView.

OnMouseMove
Use this event to perform some custom action when the mouse moves over a node.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode Node that the mouse is over

Shift: TShiftState Use the Shift parameter to respond to the state of
the shift keys and mouse buttons. Shift keys are

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Methods 203

the Shift, Ctrl, and Alt keys or shift key-mouse
button combinations.

X, Y: Integer X and Y are pixel coordinates of the new location
of the mouse pointer in the client area of the
TreeView.

OnToggleCheckbox
Use this event to perform your own custom action after a node’s checkbox or
radiobutton has been toggled.

The parameters for this event are as follows:

TreeView: TfcCustomTreeView TreeView associated with the event

Node: TfcTreeNode Node associated with the checkbox being toggled.

Added Methods

AlphaSort
AlphaSort sorts all nodes alphabetically by label in the tree view control.
function AlphaSort: boolean;
Call AlphaSort to sort the nodes of the tree view. If successful, AlphaSort returns
True. To have the tree view maintain all nodes in a sorted order (for example, when
the user edits the labels), use the SortType property.

CustomSort
CustomSort sorts the nodes in the tree view into a customized sort order.
function CustomSort(SortProc: TTVCompare;

Data: Longint): boolean;

Use CustomSort to sort the nodes of a tree view, where the sort order is defined by the
SortProc parameter. The lParam1 and lParam2 parameters of the sort procedure can
be cast to TfcTreeNode objects are compared. The lParamSort parameter of the sort
procedure is the value of Data parameter of CustomSort. The sort procedure should
return a value less than 0 if lParam1 should come before lParam2, should return 0 if
the two values are equivalent, and should return a value greater than 0 if lParam1
should follow lParam2.

If the SortProc parameter is nil, the AlphaSort method is called.
Note: To have the tree view sort all nodes automatically (for example, when the
user edits the labels), use the SortType property instead, and provide an OnCompare
event handler.

Example: This example shows how to use the CustomSort method to order a tree view
in reverse alphabetical order. The application must provide a callback function such

204 Chapter 4, 1stClass Component Reference, TfcTreeView - Added Methods

as CustomSortProc below, which calls the global AnsiStrIComp function and negates
its return value.
function CustomSortProc(Node1, Node2: TfcTreeNode;

Data: integer): integer; stdcall;
begin
 Result := -AnsiStrIComp(PChar(Node1.Text),
PChar(Node2.Text));
end;

This procedure can then be used as a parameter to CustomSort to sort the nodes of the
tree view:
TreeView1.CustomSort(@CustomSortProc, 0);

FullCollapse
Call FullCollapse to hide all the nodes in the tree view except those at the first level.
procedure FullCollapse;

FullExpand
FullExpand expands all nodes within the tree view control.
procedure FullExpand;

GetFirstSibling
Returns the first sibling of a node. If the parameter Node is set to Nil, then
GetFirstSibling returns the first node in the tree.
Function GetFirstSibling(Node: TfcTreeNode): TfcTreeNode;

GetHitTestInfoAt
GetHitTestInfoAt returns information about the location of a point relative to the
client area of the tree view control.
function GetHitTestInfoAt(X, Y: Integer): TfcHitTests;

Call GetHitTestInfoAt to determine what portion of the tree view, if any, sits under
the point specified by the X and Y parameters. For example, use GetHitTestInfoAt to
provide feedback about how to expand or collapse nodes when the mouse is over the
relevant portions of the tree view.
GetHitTestInfoAt returns a TfcHitTests type. The possible return values are:

Value Location of (X,Y)

fchtAbove Above the client area of the tree view control.

fchtBelow Below the client area of the tree view control.

fchtNowhere In the client area of the tree view control but below the last
item.

fchtOnItem On the bitmap or label associated with an item.

Chapter 4 - 1stClass Component Reference, TfcTreeView - Added Methods 205

fchtOnButton On the button associated with an item.

fchtOnIcon On the bitmap associated with an item.

fchtOnIndent On the indentation associated with an item.

fchtOnLabel On the label (text) associated with an item.

fchtOnRight In the area to the right of an item.

fchtOnStateIcon On the state icon for a tree view item that is in a user-defined
state.

fchtToRight To the right of the client area of the tree view control.

fchtToLeft To the left of the client area of the tree view control.

GetNodeAt
GetNodeAt returns the node that is found at the specified position.
function GetNodeAt(X, Y: Integer): TfcTreeNode;

Call GetNodeAt to access the node at the position specified by the X and Y
parameters. X and Y specify the position in pixels relative to the top left corner of the
tree view. If there is no node at the location, GetNodeAt returns nil.

InvalidateNode
Call InvalidateNode to force the TreeView to repaint a particular node.
Procedure InvalidateNode(Node: TfcTreeNode);

IsEditing
IsEditing indicates whether a node is currently being edited by the user. IsEditing
returns True if any node label in the tree view is being edited.
function IsEditing: boolean;

LoadFromFile
LoadFromFile reads the file specified in FileName and loads the data into the tree
view.
procedure LoadFromFile(const FileName: string);

Use the LoadFromFile method to retrieve tree view data from a file and load it into a
tree view.

LoadFromStream
LoadFromStream reads tree view data from a stream and stores the contents in the
tree view.
procedure LoadFromStream(Stream: TStream);

Use LoadFromStream to read the nodes of the tree view from the specified stream.
For example, an application can save the information displayed in a tree view as the

206 Chapter 4, 1stClass Component Reference, TfcTreeView - How To

data in a Binary Large Object (BLOB) field. LoadFromStream can retrieve the data
using a TBlobStream object.

SaveToFile
SaveToFile saves the tree view to the file specified in FileName. Use the SaveToFile
method to store tree view data to a text file. The nodes can later be reloaded from the
file into a new tree view object using the LoadFromFile method.
procedure SaveToFile(const FileName: string);

SaveToStream
SaveToStream writes the data in the tree view to the stream passed as the Stream
parameter. Use the SaveToStream method to stream out tree view data. It can be
streamed back in to another tree view object using the LoadFromStream method.
procedure SaveToStream(Stream: TStream);

UnselectAll
When MultiSelectAttributes | Enabled is True, then this method unselects all
previously selected nodes.
Procedure UnselectAll;

How To

How to use multi-selection in the TreeView
To allow the user to multi-select in the Tree, set the MultiSelectAttributes | Enabled to
True. Then the TreeView will automatically use Ctrl-MouseClick to select/deselect a
node, or Shift-MouseClick to select a range of nodes. This provides a convenient way to
perform multi-selection. If you wish for any node to be selected, set the
MultiSelectAttributes | MultiSelectLevel to –1. If you wish for only the root nodes to be
selectable, then set this property to 0. If you wish to display a checkbox next to each node
that can be multi-selected then set the MultiSelectAttributes | MultiSelectCheckbox
property to True.
To iterate through the list of selected nodes, see the example documented under the
TfcTreeView MultiSelectList property.
To select/unselect all nodes with code, you can call the SelectAll or UnselectAll methods.
To automatically unselect all the previously selected nodes when the user clicks on the
text of a node (with the mouse not in its up state), set the MultiSelectAttributes |
AutoUnselect property to True. You may wish to set this property to False so that the
end-user does not inadvertently unselect all previously selected nodes.

How to define URL Links in the TreeView
The 1stClass TreeView provides a convenient way to display the node’s text as URL links,
and open the respective URL link when the user clicks on the node. In addition the mouse

Chapter 4 - 1stClass Component Reference, TfcTreeView - How To 207

cursor will automatically change to a HandPoint when the mouse is moved over a node
containing a URL link.

URL Links with hand point

The following are the steps required to enable this functionality.

1. Set the TreeView’s Options | tvoAutoURL property to True.

2. Dbl-click the TreeView at design time to bring up the Node’s editor. Select the node
you wish to relate a URL link address to. Enter the URL link address using the
StringData property. If StringData is left unassigned, then the node is not considered
to contain a URL link and is displayed normally.

How to iterate through all the nodes.
To efficiently iterate through a TreeView use the GetFirstNode method to get the first
node in the tree, in conjunction with iterative use of the GetNext method of the
TfcTreeNode. For example…

var Node: TfcTreeNode;
begin
 Node := fcTreeView1.GetFirstNode;
 while Node<>Nil do
 begin
 { Perform your action here }
 Node := Node.GetNext;
 end;
end;

208 Chapter 4, 1stClass Component Reference, TfcTreeView - How To

How to iterate through all the immediate children of a node.
To efficiently iterate through all the child nodes of a given node, use the GetFirstChild
method to get the first node in the tree, in conjunction with iterative use of the
GetNextSibling method of the TfcTreeNode. For example the following code iterates
through all the child nodes of StartingNode (TfcTreeNode).

Node := StartingNode.GetFirstChild;
while Node<>Nil do
begin
 { Perform your action here }
 Node := Node.GetNextSibling;
end;

Chapter 4 - 1stClass Component Reference, TfcTreeView - How To 209

210 Chapter 4, Index, TfcTreeView - How To

Index

1

1stClass
benefits ..4
component overview........................... 11
components See Component overview
demonstration/sample project 11
description ...3
installing ..5
introduction..1
license agreement2
on-line help See on-line help
source code... 14
technical support3
uninstalling .. 10

1stClass 3000
custom framing................................... 73
transparency....................................... 73

A

AbsoluteIndex property
TfcTreeNode 155

Action property
TfcOutlookListItem 112

ActiveDataSet property
TfcDBTreeView................................. 57

ActiveNode property
TfcDBTreeView................................. 57

ActivePage property
TfcOutlookBar 107

Add method
TfcButtonGroupItems 22
TfcOutlookPages 110
TfcStatusPanels................................ 127
TfcTreeNodes................................... 167

AddChild method
TfcTreeNodes................................... 167

AddChildFirst method
TfcTreeNodes................................... 167

AddChildObject method
TfcTreeNodes................................... 168

AddChildObjectFirst method
TfcTreeNodes................................... 168

AddFirst method
TfcTreeNodes................................... 168

Adding color dialog support
TfcColorList 46

AddObject method
TfcTreeNodes................................... 168

AddObjectFirst method
TfcTreeNodes................................... 169

Aligning colors on the right
TfcColorList 46

Alignment event
TfcTreeHeaderSection...................... 175

Alignment property
TfcCalcEdit .. 26
TfcColorList 40
TfcText .. 134

AlignmentVertical property
TfcColorCombo.................................. 33
TfcTreeCombo 147

AllColors property
TfcColorList 40

AllowClearKey property
TfcColorCombo.................................. 33
TfcFontCombo 77
TfcTreeCombo 147

AllowClick event
TfcTreeHeaderSection...................... 175

AllowNull property
TfcCalcEdit .. 26

AlphaBlend property
TfcImager.BitmapOptions................... 97

AlphaSort method
TfcTreeNode 161
TfcTreeView.................................... 193

Animation property
TfcOutlookBar 107

ApplyBitmapRegion method
TfcImageForm.................................... 93

Assign method
TfcTreeNode 161

Index 211

TfcTreeNodes................................... 169
AutoBold property

TfcButtonGroup 19, 23
AutoDropDown property

TfcColorCombo.................................. 33
AutoExpand property

TfcTreeView.................................... 181
TfcTreeView.Options 185

Automatically display all hints
TfcStatusBar 128
TfcStatusPanel 132

AutoSize property
TfcImageForm.................................... 92
TfcImager... 96

AutoSizeHeightAdjust property
EditFrame .. 74
Frame... 74

AutoUnselect property
TfcDBTreeView.MultiSelectAttributes60
TfcTreeView.MultiSelectAttributes.. 183

B

Background property
TfcCalcEdit .. 27

BackgroundStyle property
TfcCalcEdit .. 27

bcsCheckList property
TfcButtonGroup.ClickStyle 20

bcsClick property
TfcButtonGroup.ClickStyle 20

bcsRadioGroup property
TfcButtonGroup.ClickStyle 20

BeginUpdate method
TfcTreeNodes................................... 169

benefits ..4
Bevel property

TfcStatusPanel 130
BitmapOptions property

TfcImager..................................... 49, 97
Blending bitmaps

TfcImager... 102
BlockColor property

TfcProgressBar................................. 119
BlockSize property

TfcProgressBar................................. 119
boAutoBold property

TfcImageBtn.Options.......................... 87

boFocusable property
TfcImageBtn.Options.......................... 86

boFocusRect property
TfcImageBtn.Options.......................... 87

BorderAroundLabel property
TfcGroupBox 81

boToggleOnUp property
TfcImageBtn Options.......................... 90
TfcImageBtn.Options.......................... 86

Btn3DLight property
TfcImageBtn.ShadeColors 87

BtnBlack property
TfcImageBtn.ShadeColors 87

BtnFocus property
TfcImageBtn.ShadeColors 88

BtnHighlight property
TfcImageBtn.ShadeColors 87

BtnShadow property
TfcImageBtn.ShadeColors 87

button effects
Flat property....................................... 17
supporting components 73
Transparent property 17

ButtonClassName property
TfcButtonGroup 18, 19
TfcOutlookBar 107

ButtonEffects property
TfcColorCombo.................................. 33

ButtonGlyph property
TfcColorCombo.................................. 33

ButtonItems property
TfcButtonGroup 19, 22, 23

ButtonMargin property
TfcCalcEdit .. 27

Buttons property
TfcButtonGroup 19

ButtonSize property
TfcOutlookBar 108

ButtonStyle property
TfcCalcEdit .. 26
TfcColorCombo.................................. 34
TfcTreeCombo 147

ButtonWidth property
TfcCalcEdit .. 26
TfcTreeCombo 148

212 Chapter 4, Index, TfcTreeView - How To

C

CalcOptions property
TfcCalcEdit .. 27

Canvas property
TfcDBTreeView................................. 57
TfcTreeHeader 171
TfcTreeView.................................... 181

CaptionBarControl property
TfcImageForm........................ 92, 94, 95

CaptionIndent property
TfcGroupBox 81

cboAutoCreateOutlookList property
TfcOutlookBar.Options 108

cboCloseOnEquals property
TfcCalcEdit .. 28

cboDigitGrouping property
TfcCalcEdit .. 28

cboFlatButtons property
TfcCalcEdit .. 27

cboFlatDrawStyle property
TfcCalcEdit .. 28

cboHideBorder property
TfcCalcEdit .. 27

cboHideEditor property
TfcCalcEdit .. 27

cboHideMemory property
TfcCalcEdit .. 28

cboHotTrackButtons property
TfcCalcEdit .. 27

cboRoundedButtons property
TfcCalcEdit .. 28

cboSelectOnEquals property
TfcCalcEdit .. 28

cboShowDecimal property
TfcCalcEdit .. 28

cboShowStatus property
TfcCalcEdit .. 28

cboSimpleCalc property
TfcCalcEdit .. 28

cboTransparentPanels property
TfcOutlookBar.Options 109

ccoGroupSystemColors property
TfcColorList.Options.......................... 43

ccoShowColorNames property
TfcColorList.Options.......................... 43

ccoShowColorNone property
TfcColorList.Options.......................... 42

ccoShowCustomColors property

TfcColorList.Options.......................... 42
ccoShowGreyScale property

TfcColorList.Options.......................... 43
ccoShowStandardColors property

TfcColorList.Options.......................... 43
ccoShowSystemColors property

TfcColorList.Options.......................... 42
Centering captions

TfcLabel... 104
ChangeDelay property

TfcTreeView.................................... 181
Changing buttons ability to receive focus

TfcShapeBtn 125
Changing node color based on field

TfcDBTreeView................................. 71
Changing selected button color

TfcButtonGroup 24
CheckboxType property

TfcTreeNode 155
Checked property

TfcTreeNode 155
Clear method

TfcBitmap .. 16
TfcButtonGroupItems 23
TfcTreeNodes................................... 169

ClickStyle property
TfcButtonGroup 18, 20
TfcOutlookList 111

CloseUp method
TfcCalcEdit .. 30
TfcColorCombo.................................. 37
TfcFontCombo 80
TfcTreeCombo 152

Col property
TfcStatusPanel 130

Collapse method
TfcDBTreeView................................. 67
TfcTreeNode 161

Color property
TfcImageBtn....................................... 84
TfcImager.BitmapOptions................... 97
TfcShapeBtn 122
TfcStatusPanel 130
TfcText.Shadow 136

ColorAlignment property
TfcColorCombo.................................. 34
TfcColorList 41, 46

ColorDialog property
TfcColorCombo.................................. 34

ColorDialogOptions property

Index 213

TfcColorCombo.................................. 34
ColorFromIndex method

TfcColorList 45
ColorListOptions property

TfcColorCombo.................................. 34
ColorMargin property

TfcColorList 41
ColorWidth property

TfcColorList 41
Columns property

TfcButtonGroup 20
Component Hierarchy....................... 11, 12

Complete.. 12
Component overview 11
Component property

TfcStatusPanel 130
Conserve resources with TfcImageBtn

TfcButtonGroup 23
Constrain button width

TfcButtonGroup 23
Contrast property

TfcImager.BitmapOptions................... 97
ControlSpacing property

TfcButtonGroup 20
Count property

TfcTreeNode 155
TfcTreeNodes................................... 166

CreateOutlookList method
TfcOutlookPage................................ 110

Creating a drag control for the form
TfcImageForm.................................... 94

Creating a nonrectangular form
TfcImageForm.................................... 94

csClick property
TfcOutlookList.ClickStyle 111

csoByIntensity property
TfcColorList.SortBy 44

csoByName property
TfcColorList.SortBy 43

csoByRGB property
TfcColorList.SortBy 43

csoNone property
TfcColorList.SortBy 43

csSelect property
TfcOutlookList.ClickStyle 111

custom framing
key properties and events.................... 73
supporting components 73

custom framing and transparency effects .73
CustomColors property

TfcColorCombo.................................. 34
TfcColorList41, 42, 45, 46

CustomSort method
TfcTreeNode 161
TfcTreeView.................................... 194

Cut property
TfcTreeNode 156

D

Data property
TfcTreeNode 156

DataField property
TfcCalcEdit .. 28
TfcColorCombo.................................. 34
TfcDBImager...................................... 50
TfcLabel... 103
TfcProgressBar................................. 118
TfcShapeBtn 122
TfcTrackbar...................................... 140
TfcTreeCombo 148

DataLink property
TfcDBTreeNode................................. 52

DataSet property
TfcDBTreeNode................................. 52

DataSource property
TfcCalcEdit .. 29
TfcColorCombo.................................. 35
TfcDBImager...................................... 50
TfcLabel... 103
TfcProgressBar................................. 118
TfcShapeBtn 122
TfcTrackbar...................................... 140
TfcTreeCombo 148

DataSourceFirst property
TfcDBTreeView................................. 57

DataSourceLast property
TfcDBTreeView................................. 57

DataSources property
TfcDBTreeView................................. 57

Defining a custom shaped button
TfcShapeBtn 124

Delete method
TfcTreeNode 162
TfcTreeNodes................................... 169

DeleteChildren method
TfcTreeNode 162

deleting 1stClass ..See uninstalling 1stClass

214 Chapter 4, Index, TfcTreeView - How To

Deleting property
TfcTreeNode 156

Depth property
TfcText.ExtrudeEffects............. 134, 135

Design-time aids
TfcButtonGroup 18, 23
TfcDBTreeView................................. 59
TfcImageBtn....................................... 83
TfcOutlookBar 106
TfcShapeBtn 121
TfcTreeView.................................... 178

DisabledColors property
TfcText .. 134

DisableThemes property
TfcDBTreeView................................. 58
TfcProgressBar................................. 118
TfcShapeBtn 122
TfcStatusBar 126
TfcTrackBar 140
TfcTreeCombo 148
TfcTreeHeader 171
TfcTreeview..................................... 181

DisplayFields property
TfcDBTreeView........................... 54, 58

DisplayFormat property
TfcCalcEdit .. 29
TfcProgressBar................................. 118

Displaying in InfoPower Grid
TfcColorCombo.......................... 38, 153

DisplayRect method
TfcTreeNode 162

DitherColor property
TfcImageBtn....................................... 84

DitherStyle property
TfcImageBtn....................................... 84

DoubleBuffered property
TfcText .. 134

Drag and Drop
TfcColorList 47

DragTolerance property
TfcImageForm.................................... 92

DrawInGridCell method
TfcColorCombo.................................. 37
TfcTreeCombo 152

DrawStyle property
TfcImager... 100

DropDown
TfcFontCombo 80

DropDown method
TfcCalcEdit .. 30

TfcColorCombo.................................. 37
TfcTreeCombo 152

DropDownCount property
TfcColorCombo.................................. 35
TfcFontCombo 77
TfcTreeCombo 148

DropDownWidth property
TfcColorCombo.................................. 35
TfcFontCombo 77
TfcTreeCombo 148

DropTarget property
TfcTreeNode 156
TfcTreeView.................................... 181

dsBlendDither property
TfcImageBtn.DitherStyle 85

dsCenter property
TfcImager.DrawStyle........................ 100

dsDither property
TfcImageBtn.DitherStyle 84

dsFill property
TfcImageBtn.DitherStyle 85

dsNormal property
TfcImager.DrawStyle........................ 100

dsProportional property
TfcImager.DrawStyle........................ 100

dsProportionalCenter property
TfcImager.DrawStyle........................ 100

dsStretch property
TfcImager.DrawStyle........................ 100

dsTile property
TfcImager.DrawStyle........................ 100

dtvoAutoExpandOnDSScroll property
TfcDBTreeView.Options.................... 61

dtvoExpandButtons3D property
TfcDBTreeView.Options.................... 62

dtvoFlatCheckBoxes property
TfcDBTreeView.Options.................... 62

dtvoHideSelection property
TfcDBTreeView.Options.............. 59, 62

dtvoHotTracking property
TfcDBTreeView.Options.............. 63, 71

dtvoKeysScrollLevelOnly property
TfcDBTreeView.Options.................... 61

dtvoRowSelect property
TfcDBTreeView.Options.................... 62

dtvoShowButtons property
TfcDBTreeView.Options.................... 62

dtvoShowHorzScrollBar property
TfcDBTreeView.Options.................... 62

dtvoShowLines property

Index 215

TfcDBTreeView.Options.................... 62
dtvoShowNodeHint property

TfcDBTreeView.Options.................... 62
dtvoShowRoot property

TfcDBTreeView.Options.................... 62
dtvoShowVertScrollBar property

TfcDBTreeView.Options.................... 62

E

edit controls
custom framing................................... 73
transparency effects 73

EditText method
TfcTreeNode 162

Embossed property
TfcImager.BitmapOptions................... 97

Emulating Outlook Express’s OutlookBar
TfcOutlookList 116

Enabled property
EditFrame .. 74
Frame... 74
TfcDBTreeView.MultiSelectAttributes60
TfcOutlookBar.Animation 107
TfcOutlookListItem 112
TfcStatusPanel 130
TfcText.ExtrudeEffects............. 134, 135
TfcText.Shadow 136
TfcTreeView.MultiSelectAttributes.. 183

EndEdit method
TfcTreeNode 162

EndUpdate method
TfcTreeNodes................................... 169

ExecuteColorDialog method
TfcColorCombo.................................. 37

Expand method
TfcDBTreeView................................. 67
TfcTreeNode 163

Expanded property
TfcDBTreeNode................................. 52
TfcTreeNode 157

ExtImage property
TfcImageBtn........................... 23, 85, 89

ExtImageDown property
TfcImageBtn........................... 23, 85, 89

ExtrudeEffects property
TfcText .. 134

F

FarColor property
TfcText.ExtrudeEffects..................... 135

fbsFlat property
TfcImageBtn.ShadeStyle..................... 88

fbsHighlight property
TfcImageBtn.ShadeStyle..................... 88

fbsNormal property
TfcImageBtn.ShadeStyle..................... 88

fbsRaised property
TfcImageBtn.ShadeStyle..................... 88

fclsDefault property
TfcText.Style.................................... 137

fclsLowered property
TfcText.Style.................................... 137

fclsOutline property
TfcText.Style.................................... 137

fclsRaised property
TfcText.Style.................................... 137

fcstBoth property
TfcTreeView.SortType 187

fcstData property
TfcTreeView.SortType 187

fcstText property
TfcTreeView.SortType 187

FieldName event
TfcTreeHeaderSection...................... 175

FindButton method
TfcButtonGroupItems 22

FindNode method
TfcTreeNodes................................... 170

Flat property... 17
Flat-style buttons

TfcShapeBtn 125
Focus color outline

TfcShapeBtn 125
Focusable property

TfcImager... 100
FocusBorders property

EditFrame .. 74
Frame... 74

Focused property
TfcTreeNode 157

FocusStyle property
EditFrame .. 74
Frame... 74

Font property
TfcStatusPanel 131

216 Chapter 4, Index, TfcTreeView - How To

Formatting display of date/time
TfcStatusBar 128

frame effects
key properties and events.................... 73
supporting components 73

Frame property
TfcColorCombo.................................. 35
TfcFontCombo 77
TfcGroupBox 82
TfcPanel... 117
TfcTreeCombo 148

Frequency property
TfcTrackBar 140

FullBorder property
TfcGroupBox 82

FullCollapse method
TfcTreeView.................................... 194

FullExpand method
TfcTreeView.................................... 194

G

GaussianBlur property
TfcImager.BitmapOptions................... 98

GetColorFromRGBString method
TfcColorCombo.................................. 38

GetFieldValue method
TfcDBTreeNode................................. 54

GetFirstChild method
TfcTreeNode 163

GetFirstNode method
TfcTreeNodes................................... 170

GetFirstSibling method
TfcTreeView.................................... 194

GetHandle method
TfcTreeNode 163

GetHitTestInfoAt method
TfcDBTreeView................................. 67
TfcTreeView.................................... 195

GetLastChild method
TfcTreeNode 163

GetNext method
TfcTreeNode 163

GetNextChild method
TfcTreeNode 163

GetNextSibling method
TfcTreeNode 164

GetNextVisible method

TfcTreeNode 164
GetNode method

TfcTreeNodes................................... 170
GetNodeAt method

TfcDBTreeView................................. 68
TfcTreeView.................................... 195

GetPanelFromPt method
TfcStatusBar 128

GetPrev method
TfcTreeNode 164

GetPrevChild method
TfcTreeNode 164

GetPrevSibling method
TfcTreeNode 164

GetPrevVisible method
TfcTreeNode 164

GetRect method
TfcStatusPanel 133

GlyphOffset property
TfcOutlookList 112

GlyphX property
TfcImageBtn.Offsets........................... 86

GlyphY property
TfcImageBtn.Offsets........................... 86

Grayed property
TfcTreeNode 157

Grayscale property
TfcImager.BitmapOptions................... 98

GreyScaleIncrement property
TfcColorList 41
TfcColorList.Options.......................... 43

H

Handle property
TfcTreeNode 157
TfcTreeNodes................................... 166

HasAsParent method
TfcTreeNode 164

HasChildren property
TfcDBTreeNode................................. 52
TfcTreeNode 157

Header property
TfcDBTreeView. See TfcTreeHeader, See

TfcTreeHeader, See TfcTreeHeader
Help ... 13

Exhaustive Index................................ 13
How-To & Tips Sections 13

Index 217

Implementation & Coding Examples... 13
On-line help 13
Troubleshooting Section 13

Hiding expand for childless nodes
TfcDBTreeView................................. 71

Highlight property
TfcText .. 135

Hint property
TfcOutlookListItem 112
TfcStatusPanel 131

HorizontallyFlipped property
TfcImager.BitmapOptions................... 98

Hot property
TfcDBTreeNode................................. 53

HotTrack property
TfcTreeHeader 172

Hot-tracking
TfcImageBtn....................................... 89
TfcLabel... 104

Hot-tracking specific nodes
TfcDBTreeView................................. 71

HotTrackStyle property
TfcOutlookList 111

hsIconHilite property
TfcOutlookList.HotTrackStyle 112

hsItemHilite property
TfcOutlookList.HotTrackStyle 112

I

icoEndNodesOnly property
TfcTreeCombo.Options 149

icoExpanded property
TfcTreeCombo.Options 149

ifUseWindowsDrag property
TfcImageForm.Options 92

Image combo
TfcTreeCombo 152

Image property
TfcImageBtn....................................... 85

ImageAlignment event
TfcTreeHeaderSection...................... 175

ImageDown property
TfcImageBtn....................................... 85

ImageIndex event
TfcTreeHeaderSection...................... 176

ImageIndex property
TfcDBTreeNode................................. 53

TfcOutlookListItem 112
TfcStatusPanel 131
TfcTreeNode 158

Imager property
TfcDBTreeView................................. 59
TfcOutlookBar 108

Images property
TfcDBTreeView................................. 59
TfcOutlookList 112
TfcStatusBar 126
TfcTreeCombo 149
TfcTreeHeader 172
TfcTreeView.................................... 182

ImmediateHints property
TfcFontCombo 77, 78

InactiveFocusColor property
TfcDBTreeView................................. 59
TfcDBTreeView................................. 62
TfcTreeView.................................... 182

Increment property
TfcTrackBar 141

Indent property
TfcStatusPanel 131
TfcTreeView.................................... 182

Index method
TfcTreeNode 165

Index property
TfcTreeNode 158

InfoPower support
TfcCalcEdit .. 25
TfcColorCombo.................................. 32
TfcTreeCombo 146

InitColorList method
TfcColorList 45

Initializing
TfcCalcEdit .. 30
TfcColorCombo.................................. 38

Insert method
TfcTreeNodes................................... 170

InsertObject method
TfcTreeNodes................................... 170

installation ...5
requirements ..5
step-by-step ..6

Installation
On-line Help

Delphi..8
Tip ...9

Integration
TfcDBImager...................................... 51

218 Chapter 4, Index, TfcTreeView - How To

TfcImager... 102
Interval property

TfcOutlookBar.Animation 107
Invalidate method

TfcStatusBar 128
InvalidateClient method

TfcDBTreeView................................. 68
InvalidateNode method

TfcDBTreeView................................. 68
TfcTreeView.................................... 195

InvalidateRow method
TfcDBTreeView................................. 68

Inverted property
TfcImager.BitmapOptions................... 98
TfcTrackBar 141

IsCustomColor method
TfcColorCombo.................................. 38

IsDroppedDown method
TfcCalcEdit .. 30
TfcColorCombo.................................. 38
TfcTreeCombo 152

IsEditing method
TfcTreeView.................................... 196

IsRadioGroup method
TfcTreeNode 165

IsSelectedRecord method
TfcDBTreeView................................. 68

IsValidNode method
TfcTreeCombo 152

IsVisible property
TfcTreeNode 158

Item property
TfcTreeNode 158
TfcTreeNodes................................... 166

ItemDisabledTextColor property
TfcOutlookListItem 113

ItemHighlightColor property
TfcOutlookList 114

ItemHotTrackColor property
TfcOutlookList 114

ItemID property
TfcTreeNode 158

ItemIndex property
TfcColorList 41

ItemLayout property
TfcOutlookList 114

 113

Items property
TfcColorList 40, 42

TfcOutlookList 112
TfcTreeCombo 149
TfcTreeView.................................... 182

ItemShadowColor property
TfcOutlookList 114

ItemSpacing property
TfcOutlookList 114

ItemsWidth property
TfcOutlookList 114

Iterating through colors
TfcColorCombo............................ 31, 38

Iterating through descendants
TfcTreeView.................................... 198

Iterating through items
TfcButtonGroup 23

Iterating through multiselection
TfcDBTreeView................................. 72

Iterating through nodes
TfcTreeView.................................... 198

L

LastVisibleDataSet property
TfcDBTreeView................................. 59

Layout property
TfcButtonGroup 21
TfcOutlookList 114

Level property
TfcDBTreeNode................................. 53
TfcTreeNode 159

LevelIndent
TfcDBTreeView................................. 60

License Agreement2
Lightness property

TfcImager.BitmapOptions................... 98
Limiting color choices

TfcColorList 45
LineColor property

TfcDBTreeView................................. 60
TfcTreeView.................................... 183

LineSpacing property
TfcText .. 135

LoadFromBitmap method
TfcBitmap .. 16

LoadFromFile method
TfcTreeView.................................... 196

LoadFromStream method
TfcTreeView.................................... 196

Index 219

M

MakeActiveDataSet method
TfcDBTreeView................................. 68

MakeVisible method
TfcTreeNode 165

Margin property
TfcStatusPanel 131

Max property
TfcProgressBar................................. 118
TfcTrackBar 141

MaxControlSize property
TfcButtonGroup 21, 23, 24

MaxMRU property
TfcFontCombo 78

MaxWidth event
TfcTreeHeaderSection...................... 176

Min property
TfcProgressBar................................. 118
TfcTrackBar 141

MinWidth event
TfcTreeHeaderSection...................... 176

MouseEnterSameAsFocus property
Frame... 75

MouseOnItem property
TfcOutlookListItem 113

MoveTo method
TfcDBTreeView................................. 68
TfcTreeNode 165

Multiline captions
TfcImageBtn....................................... 89
TfcLabel... 104

MultiSelect property
TfcColorList 46

MultiSelectAttributes property
TfcDBTreeView................................. 60
TfcTreeView.................................... 183

MultiSelectCheckbox property
TfcTreeView.MultiSelectCheckbox.. 184

MultiSelectCheckBox property
TfcDBTreeView.MultiSelectAttributes60

MultiSelected property
TfcDBTreeNode................................. 53
TfcTreeNode 159

Multi-selection
TfcTreeView.................................... 196

MultiSelectLevel property
TfcDBTreeView.MultiSelectAttributes60
TfcTreeView.MultiSelectAttributes.. 183

MultiSelectList property
TfcDBTreeView................................. 61
TfcTreeView.................................... 184

MultiSelectListCount property
TfcDBTreeView................................. 61
TfcTreeView.................................... 184

N

Name property
TfcStatusPanel 131

NearColor property
TfcText.ExtrudeEffects..................... 135

Nodes editor
TfcTreeView.................................... 178

NoneString property
TfcColorList 42

NonFocusBorders property
EditFrame .. 74
Frame... 74

NonFocusColor property
EditFrame .. 74
Frame... 74

NonFocusFontColor property
EditFrame .. 74
Frame... 74

NonFocusStyle property
EditFrame .. 74
Frame... 74

NonFocusTextOffsetX property
EditFrame .. 74
Frame... 74

NonFocusTextOffsetY property
EditFrame .. 74
Frame... 74

NonFocusTransparentFontColor property
EditFrame .. 75
Frame... 75

Nonrectangular forms 91
NumGlyphs property

TfcImageBtn....................................... 85

O

Offsets
TfcImageBtn....................................... 90

Offsets property

220 Chapter 4, Index, TfcTreeView - How To

TfcImageBtn....................................... 86
OnAddFont event

TfcFontCombo 79
OnAddNewColor event

TfcColorCombo.................................. 36
TfcColorList 44

OnCalcNodeAttributes event
TfcDBTreeView..........53, 54, 63, 71, 72
TfcTreeCombo 151
TfcTreeView.................................... 187

OnCalcPictureType event
TfcDBImager...................................... 50

OnChange event
TfcButtonGroup 22, 24
TfcDBTreeView................................. 64
TfcOutlookBar 109
TfcProgressbar 119
TfcTrackbar...................................... 145
TfcTreeHeader 173
TfcTreeView.................................... 188

OnChanging event
TfcButtonGroup 22
TfcOutlookBar 109
TfcTreeView.................................... 188

OnCheckValidItem event
TfcTreeCombo 151

OnCloseColorDialog event
TfcColorCombo.................................. 36

OnCloseUp event
TfcColorCombo.................................. 36
TfcTreeCombo 151

OnCollapsed event
TfcTreeView.................................... 188

OnCollapsing event
TfcTreeView.................................... 188

OnCompare event
TfcTreeView.................................... 189

OnDblClick event
TfcDBTreeView........................... 64, 66
TfcTreeView.................................... 192

OnDeletion event
TfcTreeView.................................... 189

OnDrawItem event
TfcOutlookList 115

OnDrawKeyBoardState event
TfcStatusBar 127

OnDrawPanel event
TfcStatusBar 127

OnDrawSection event
TfcDBTreeView................................. 64

OnDrawText event
TfcDBTreeView................................. 65
TfcStatusPanel 133
TfcTreeView.................................... 189

OnDrawTickText event
TfcTrackbar...................................... 144

OnDropDown event
TfcColorCombo.................................. 37
TfcTreeCombo 151

OnEdited event
TfcTreeView.................................... 190

OnEditing event
TfcTreeView.................................... 191

OnExpanded event
TfcTreeView.................................... 191

OnExpanding event
TfcTreeView.................................... 191

OnFilterColor event
TfcColorCombo...................... 31, 37, 38
TfcColorList 40, 44

OnGenerateFontHint event
TfcFontCombo 80

OnGetImageIndex event
TfcTreeView.................................... 191

OnGetSelectedIndex event
TfcTreeView.................................... 192

OnInitColorDialog event
TfcColorCombo.................................. 37

OnItemChange event
TfcOutlookList 116
TfcTreeView.................................... 192

OnItemClick event
TfcOutlookList 116

On-line help ... 13
OnMouseDown event

TfcDBTreeView................................. 66
TfcTreeView.................................... 192

OnMouseEnter event
TfcImageBtn....................................... 89
TfcLabel... 104

OnMouseLeave event
TfcImageBtn....................................... 89
TfcLabel... 104

OnMouseMove event
TfcDBTreeView........................... 54, 66
TfcTreeView.................................... 193

OnMouseUp event
TfcDBTreeView................................. 66
TfcTreeView.................................... 192

OnSectionClick event

Index 221

TfcTreeHeader 173
OnSectionDrag event

TfcTreeHeader 173
OnSectionResize event

TfcTreeHeader 174
OnSectionTrack event

TfcTreeHeader 174
OnSelChange event

TfcImageBtn....................................... 89
OnSelectionChange event

TfcFontCombo 80
TfcTreeCombo 151

OnSetCalcButtonAttributes event
TfcCalcEdit .. 29

OnTextChanged event
TfcStatusPanel 133

OnToggleCheckbox event
TfcTreeView.................................... 193

OnUserCollapse event
TfcDBTreeView................................. 66

OnUserExpand event
TfcDBTreeView................................. 67

Options property
TfcCalcEdit .. 27
TfcColorList 42
TfcDBTreeView................................. 61
TfcImageBtn....................................... 86
TfcImageForm.................................... 92
TfcOutlookBar 108
TfcText .. 136
TfcTreeCombo 149
TfcTreeHeader 172
TfcTreeView.................................... 184

Orientation property
TfcProgressBar................................. 119

Orientation property
TfcShapeBtn 122

Orientation property
TfcText.ExtrudeEffects..................... 135

Orientation property
TfcTrackBar 141

OutlineColor property
TfcText .. 136

OutlookBar property
TfcOutlookPage................................ 108

OutlookItems property
TfcOutlookBar 108

OutlookList property
TfcOutlookPage................................ 108

Owner property

TfcTreeNode 159
TfcTreeNodes................................... 167

P

paBottom property
TfcOutlookBar.PanelAlignment........ 109

paDynamic property
TfcOutlookBar.PanelAlignment........ 109

PageSize property
TfcTrackBar 141

PaintCanvas property
TfcOutlookList 114

Painting performance
TfcImageBtn....................................... 90

Panel property
TfcOutlookPage................................ 108

PanelAlignment property
TfcOutlookBar 109

PanelByName method
TfcStatusPanels................................ 127

PanelColor property
TfcCalcEdit .. 28

Panels property
TfcStatusBar 127

paperless forms....................................... 73
Parent property

TfcDBTreeNode................................. 53
TfcTreeNode 159

ParentClipping property
TfcImageBtn................................. 87, 90

paTop property
TfcOutlookBar.PanelAlignment........ 109

picture masks
supporting components 73

Picture property
TfcDBImager...................................... 50
TfcImageForm.................................... 92
TfcImager... 100

PictureType property
TfcDBImager...................................... 50

PointList property
TfcShapeBtn 123

PopupMenu property
TfcStatusPanel 131

Position property
TfcTrackBar 141

PreLoad property

222 Chapter 4, Index, TfcTreeView - How To

TfcFontCombo 78
PreProcess property

TfcImager... 100
Preventing multiselect highlighting

TfcDBTreeView................................. 72
Progress property

TfcProgressBar................................. 119
Proportional Sizing

TfcStatusBar 129
psCapsLock property

TfcStatusPanel.Style......................... 132
psComputerName property

TfcStatusPanel.Style......................... 132
psControl property

TfcStatusPanel.Style......................... 132
psDate property

TfcStatusPanel.Style......................... 132
psDateTime property

TfcStatusPanel.Style......................... 132
psHint property

TfcStatusPanel.Style......................... 132
psNumLock property

TfcStatusPanel.Style......................... 132
psOverWrite property

TfcStatusPanel.Style......................... 132
psRichEditStatus property

TfcStatusPanel.Style......................... 132
psScrollLock

TfcStatusPanel.Style......................... 132
psTextOnly property

TfcStatusPanel.Style......................... 132
psTime property

TfcStatusPanel.Style......................... 132
psUserName property

TfcStatusPanel.Style......................... 132

R

ReadOnly property
TfcTrackBar 141

RecentFonts property
TfcFontCombo 78

Reformatting displayed text
TfcStatusBar 128

RefreshList method
TfcColorCombo.................................. 38

Reload method
TfcFontCombo 80

Removing region
TfcImageBtn....................................... 90

requirements...5
RespectPalette property

TfcImageBtn....................................... 87
TfcImager... 101

Retrieving multiselected colors
TfcColorList 46

RichEdit Line/Column info
TfcStatusPanel 132

RightClickNode property
TfcTreeView.................................... 186

RightClickSelect property
TfcTreeView.................................... 186

Rotation property
TfcImager.BitmapOptions................... 98
TfcText .. 136

RoundRectBias property
TfcShapeBtn 123

S

Saturation property
TfcImager.BitmapOptions................... 98

SaveToBitmap method
TfcBitmap .. 16

SaveToFile method
TfcTreeView.................................... 196

SaveToStream method
TfcTreeView.................................... 196

Saving resources
TfcImageBtn....................................... 89

ScrollButtonsVisible property
TfcOutlookList 115

ScrollInterval property
TfcOutlookList 115

Sections property
TfcTreeHeader 172

Selected property
TfcButtonGroup 21
TfcDBTreeNode................................. 54
TfcOutlookList 115
TfcOutlookListItem 113
TfcTreeNode 159
TfcTreeView.................................... 186

SelectedColor property
TfcCalcEdit .. 29
TfcColorCombo............................ 35, 38

Index 223

TfcColorList 43
SelectedFont property

TfcFontCombo 78
SelectedIndex property

TfcTreeNode 160
SelectedNode property

TfcTreeCombo 149
Selecting a button at Design time

TfcButtonGroup 23
SelectRecord method

TfcDBTreeView................................. 68
SelEnd property

TfcTrackBar 142
SelStart property

TfcTrackBar 142
Seperation property

TfcOutlookListItem 113
SetSelectedNode method

TfcTreeCombo 152
Setting shade colors

TfcShapeBtn 125
ShadeColor property

TfcText .. 136
ShadeColors property

TfcImageBtn....................................... 87
ShadeStyle property

TfcImageBtn....................................... 88
Shadow property

TfcImageBtn.ShadeColors 88
TfcText .. 136

Shape property
TfcShapeBtn 124

Sharpen property
TfcImager.BitmapOptions................... 99

ShowButton property
TfcCalcEdit .. 29
TfcColorCombo.................................. 35

ShowButtons property
TfcOutlookBar 109

ShowDownAsUp property
TfcButtonGroup 21
TfcOutlookBar 109

ShowFocusRect property
TfcImager... 101

ShowFontHint property
TfcFontCombo 78

ShowMatchText property
TfcColorCombo.................................. 35
TfcFontCombo 78
TfcTreeCombo 149

ShowProgressText property
TfcProgressBar................................. 119

Simulate windows taskbar
TfcButtonGroup 24

SizeToDefault method
TfcImageBtn....................................... 89
TfcShapeBtn 124

SliderVisible property
TfcTrackBar 142

Smooth property
TfcProgressBar................................. 119

SmoothStretching property
TfcImager... 101

SortBy property
TfcColorList 43

Sorted property
TfcFontCombo 78
TfcTreeCombo 149

SortList method
TfcColorList 45

SortMultiSelectList method
TfcDBTreeView................................. 69

SortType property
TfcTreeView.................................... 186

source code........... See 1stClass source code
SpacingEdgeTrackbar property

TfcTrackBar 142
SpacingLeftTop property

TfcTrackBar 142
SpacingRightBottom property

TfcTrackBar 142
Sponge property

TfcImager.BitmapOptions................... 99
StateImages property

TfcDBTreeView................................. 63
TfcTreeCombo 150
TfcTreeView.................................... 187

StateIndex property
TfcDBTreeNode................................. 54
TfcTreeNode 160

StaticCaption property
TfcShapeBtn 124

Step property
TfcProgressBar................................. 119

StepIt method
TfcProgressbar 119, 120

Steps property
TfcOutlookBar.Animation 107

StoreDataUsing property

224 Chapter 4, Index, TfcTreeView - How To

TfcTreeCombo 150
Striated property

TfcText.ExtrudeEffects..................... 135
StringData property

TfcTreeNode 160
StringData2 property

TfcTreeNode 160
Style event

TfcTreeHeaderSection...................... 176
Style property

TfcColorCombo.................................. 36
TfcFontCombo 79
TfcStatusPanel 131
TfcText .. 137
TfcTreeCombo 150

T

TabOrder property
TfcImager... 101

TabStop property
TfcImager... 101

Technical Support.....................................3
Text event

TfcTreeHeaderSection...................... 176
Text property

TfcCalcEdit .. 29
TfcDBTreeNode................................. 54
 113
TfcTreeNode 160

TextAlignment property
TfcOutlookListItem 113

TextAttributes property
TfcTrackBar 142

TextDownX property
TfcImageBtn.Offsets........................... 86

TextDownY property
TfcImageBtn.Offsets........................... 86

TextOptions
TfcLabel... 103

TextOptions property
TfcImageBtn....................................... 88
TfcStatusPanel 133

TextX property
TfcImageBtn.Offsets........................... 86

TextY property
TfcImageBtn.Offsets........................... 86

TfcBitmap .. 16

Added methods................................... 16
TfcButtonEffects..................................... 17

Properties... 17
TfcButtonGroup.................................. 3, 18

Added Events 22
Added Methods 22
Added Properties................................ 19
Changing selected button color 24
Conserving resources when using Image

button... 23
Constraining width or height 23
Design-time aids 18, 23
How To.. 23
Iterating through items........................ 23
Removing auto bold effect 23
Selecting a button at design time 23
Simulating a windows task bar 24
Using a TfcImageBtn.......................... 23

TfcButtonGroupItem............................... 20
TfcButtonGroupItems 19

Added Methods 22
TfcCalcEdit .. 3, 25

Added Events 29
Added Methods 30
Added Properties................................ 26
How To.. 30
InfoPower support 25
Initializing color 30

TfcColorCombo.................................. 3, 32
Added Events 36
Added Methods 37
Added Properties................................ 33
Displaying in InfoPower Grid 38, 153
How To.. 38
InfoPower support 32
Initializing color 38
Iterating through colors................. 31, 38
ScreenShot ... 32
Tips.. 39

TfcColorList 3, 40
Added Events 44
Added Methods 45
Added Properties................................ 40
Adding color dialog support................ 46
Aligning colors on the right 46
Dragging and Dropping a Color 47
How To.. 45
Limiting color choices 45
OnFilterColor event example.............. 45
Retrieving multiselected colors........... 46

Index 225

Tips.. 48
Using the OnAddNewColor event....... 44

TfcDBImager...................................... 3, 49
Added Events 50
Added Properties................................ 49
How To.. 51
Integrating with TDBCtrlGrid............. 51
Loading Pictures................................. 51
Using the OnCalcPictureType event.... 51

TfcDBTreeNode 52
Added Methods 54
Added Properties................................ 52
Hot-tracking 53

TfcDBTreeView............................. 3, 4, 56
Added Events 63
Added Methods 67
Added Properties................................ 57
Background image.............................. 59
Changing node color based on field 71
Changing painting attributes............... 63
Design-time aids 59
Hiding expand icon for childless nodes71
Hot-tracking specific nodes................. 71
How To.. 69
Iterating through multiselection 72
Preventing multiselect highlighting..... 72
Text and display format 58
Using PopupMenu on selected node.... 72

TfcEditFrame ... 73
TfcFontCombo.................................... 3, 76

Added Events 79
Added Methods 80
Added Properties................................ 76

TfcGroupBox...................................... 3, 81
Added Properties................................ 81
Focus/NonFocus Colors 82
Tips.. 82

TfcImageBtn....................................... 3, 83
256 Color palette issues...................... 87
Added Events 89
Added Methods 89
Added Properties................................ 84
Caption and glyph offsets 90
Clipping... 90
Design-time aids 83

Set shade colors.............................. 83
Size to default 84

Different up/down image shapes... 86, 90
Down text offsets 86
Glyph offsets 86

Handling tabbing and focus issues 90
Hot-tracking 89
How To.. 89
Multiline captions 89
Painting appearance............................ 87
Painting performance.......................... 90
Removing region 90
Resource optimization 85
Saving resources................................. 89
Switches... 86
Text offsets .. 86
Tips.. 90
Using as TButton or TBitBtn 90
Using as TSpeedButton 90

TfcImageForm 3, 91
Added Properties................................ 92
Decreasing size of executable 94
Designing the image 94
Drag control for the form.............. 92, 94
How To.. 94
Loading images at runtime.................. 93
Tips.. 94

TfcImager ... 3, 96
256 Color palette issues.................... 101
Accessing the working bitmap 102
Added Properties................................ 96
Bitmap effects 49, 97
Blending two bitmaps....................... 102
Centering an image........................... 100
Different Drawing Styles 100
Effects

AlphaBlend.................................... 97
Amount...................................... 97
Bitmap....................................... 97
Transparent................................ 97

Brightness 98
Color.. 97
Contrast ... 97
Embossed....................................... 97
Flip Horizontally 98
Flip Vertical................................... 99
GaussianBlur 98
Grayscale 98
Invert ... 98
Rotation ... 98

Angle ... 98
Saturation....................................... 98
Sharpness....................................... 99
Sponge ... 99
Tint.. 99

226 Chapter 4, Index, TfcTreeView - How To

Wave.. 99
How To.. 102
Integrating with TfcDBTreeView...... 102
Integrating with TfcOutlookBar 102
Painting tips 100, 101
Performance 100
Propotional stretching....................... 100
Stretching an image 100
Tiling an image 100

TfcLabel... 3, 103
Added Events 104
Added Properties.............................. 103
Centering captions............................ 104
Hot-tracking 104
Hot-tracking example 104
How To.. 104
Multiline captions 104
Tips.. 105

TfcOutlookBar.................................. 3, 106
Added Events 109
Added Methods 110
Added Properties.............................. 107
Animation performance issues 110
Design-time aids 106

Create OutlookList 106
New button 106
Paste .. 106

Embedding your own controls........... 110
How To.. 110
Tips.. 110

TfcOutlookList 111
Added Events 115
Added Properties.............................. 111
Customizing the appearance of items 115
Emulating Outlook Express’s OutlookBar

.. 116
How To.. 116

TfcOutlookPage.................................... 108
TfcPanel ... 3, 117

Added Properties.............................. 117
TfcProgressbar...................................... 118
TfcProgressBar ...3

Added Events 119
Added Methods 119
Added Properties.............................. 118

TfcShapeBtn..................................... 3, 121
Added Methods 124
Added Properties.............................. 122
Changing buttons ability to receive focus

.. 125

Custom Shapes................................. 123
Defining a custom shaped button 124
Design-time aids 121
Flat-style buttons.............................. 125
Focus color outline 125
How To.. 124
Setting shade colors automatically 125
Standard Shapes 124
Tips.. 125

TfcStatusBar..................................... 4, 126
Added Events 127
Added Methods 127
Added Properties.............................. 126
Automatic hints 128
Formatting display of date/time 128
How To.. 128
Menu hints 128
Proportional Sizing........................... 129
Reformatting displayed text 128
Tips.. 129
Using OnDrawText event 128

TfcStatusPanel...................................... 130
Added Events 133
Added Methods 133
Added Properties.............................. 130
Automatic Hints 132
Computer Info 132
Current Date/Time 132
Custom Controls............................... 132
Keyboard States 132
RichEdit Line/Column info............... 132

TfcText .. 134
Added Properties.............................. 134
Adding shadows to text 137
Disabled colors................................. 134
Extrusion effects............................... 134
How To.. 137
Rotation ... 136
Text Shadow Settings 136
Text Styles 137
Tips.. 138

TfcTrackbar.. 139
Added Events 144
Added Properties.............................. 140

TfcTreeCombo.................................. 4, 146
Added Events 151
Added Methods 152
Added Properties.............................. 147
How To.. 152
Image combo 152

Index 227

InfoPower support 146
Initializing an unbound TfcTreeCombo

.. 153
Iterating through list of nodes 153
Make only end nodes selectable........ 153
Non-heiarchical combobox 152

TfcTreeHeader
Added Events 172
Added Properties.............................. 171

TfcTreeHeaderSection
Added Properties.............................. 175

TfcTreeNode .. 155
Methods ... 161
Properties... 155

TfcTreeNodes....................................... 166
Methods ... 167
Properties... 166

TfcTreeView 4, 177
Added Events 187
Added Methods 193
Added Properties.............................. 181
Design-time aids 178

Item Properties 179
Items group box............................ 178

How To.. 196
Iterating through descendants 198
Iterating through nodes 198
Multi-selection 196
Nodes editor..................................... 178
URL Links 197

ThumbColor property
TfcTrackBar 143

ThumbLength property
TfcTrackBar 143

ThumbThickness property
TfcTrackBar 143

TickMarks property
TfcTrackBar 143

TickStyle property
TfcTrackBar 144

TintColor property
TfcImager.BitmapOptions................... 99

toFullJustify property
TfcText.Options 136

TopItem property
TfcTreeView.................................... 187

toShowAccel property
TfcText.Options 136

toShowEllipsis property
TfcText.Options 136

TrackColor property
TfcTrackBar 144

TrackPartialFillColor property
TfcTrackBar 144

TrackThumbIcon property
TfcTrackBar 144

transparency
supporting components 73

Transparent property............................... 17
EditFrame .. 75
Frame... 75
TfcButtonGroup 21
TfcGroupBox 82
TfcImager... 101
TfcOutlookList 115
TfcPanel... 117

TransparentColor property
TfcImageBtn....................................... 88
TfcImageForm.................................... 93
TfcImager... 101

Tree property
TfcTreeHeader 172

TreeOptions property
TfcFontCombo 79
TfcTreeCombo 150

TreeView property
TfcFontCombo 79
TfcTreeCombo 150
TfcTreeNode 161

Turning off AutoBold
TfcButtonGroup 23

tvctCheckbox property
TfcTreeNode.CheckboxType 155

tvctNone property
TfcTreeNode.CheckboxType 155

tvctRadioGroup property
TfcTreeNode.CheckboxType 155

tvo3StateCheckbox property
TfcTreeView.Options 186

tvoAutoURL property
TfcTreeView.Options 160

tvoEditText property
TfcTreeView.Options 186

tvoExpandButtons3D property
TfcTreeView.Options 184

tvoExpandOnDblClick property
TfcTreeView.Options 184

tvoFlatCheckBoxes property
TfcTreeView.Options 184

tvoHideSelection property

228 Chapter 4, Index, TfcTreeView - How To

TfcTreeView.Options 185
tvoHotTrack property

TfcTreeView.Options 185
tvoRowSelect property

TfcTreeView.Options 185
tvoShowButtons property

TfcTreeView.Options 185
tvoShowLines property

TfcTreeView.Options 185
tvoShowRoot property

TfcTreeView.Options 185
tvoToolTips property

TfcTreeView.Options 185

U

UnboundAlignment property
TfcColorCombo.................................. 36

underline controls 73
uninstalling 1stClass............................... 10
UnselectAll method

TfcDBTreeView................................. 69
TfcTreeView.................................... 196

UnselectRecord method
TfcDBTreeView................................. 69

UpdateShadeColors method
TfcImageBtn............................... 89, 125

URL Links
TfcTreeView.................................... 197

Using a TfcImageBtn
TfcButtonGroup 23

Using as TButton or TBitBtn
TfcImageBtn....................................... 90

Using as TSpeedButton
TfcImageBtn....................................... 90

Using PopupMenu
TfcDBTreeView................................. 72

V

Valignment property
TfcText .. 137

VerticallyFlipped property
TfcImager.BitmapOptions................... 99

Visible property
TfcImageForm.................................... 93
TfcOutlookListItem 113

W

Wave property
TfcImager.BitmapOptions................... 99

Width event
TfcTreeHeaderSection...................... 176

Width property
TfcStatusPanel 133

WordWrap property
TfcText .. 137

WorkBitmap property
TfcImager... 102

X

XOffset property
TfcText.Shadow 137

Y

Yoffset property
TfcText Shadow 137

